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Preface

C++ Primer, Fourth Edition, provides a comprehensive introduction to the C++ language. As a primer, it provides a clear tutorial approach to the language, enhanced by numerous examples and other learning aids. Unlike most primers, it also provides a detailed description of the language, with particular emphasis on current and effective programming techniques.

Countless programmers have used previous editions of C++ Primer to learn C++. In that time C++ has matured greatly. Over the years, the focus of the languageand of C++ programmershas grown beyond a concentration on run-time efficiency to focus on ways of making programmers more efficient. With the widespread availability of the standard library, it is possible to use and learn C++ more effectively than in the past. This revision of the C++ Primer reflects these new possiblities.







Changes to the Fourth Edition

In this edition, we have completely reorganized and rewritten the C++ Primer to highlight modern styles of C++ programming. This edition gives center stage to using the standard library while deemphasizing techniques for low-level programming. We introduce the standard library much earlier in the text and have reformulated the examples to take advantage of library facilities. We have also streamlined and reordered the presentation of language topics.

In addition to restructuring the text, we have incorporated several new elements to enhance the reader's understanding. Each chapter concludes with a Chapter Summary and glossary of Defined Terms, which recap the chapter's most important points. Readers should use these sections as a personal checklist: If you do not understand a term, restudy the corresponding part of the chapter.

We've also incorporated a number of other learning aids in the body of the text:

Important terms are indicated in bold; important terms that we assume are already familiar to the reader are indicated in bold italics. Each term appears in the chapter's Defined Terms section.

Throughout the book, we highlight parts of the text to call attention to important aspects of the language, warn about common pitfalls, suggest good programming practices, and provide general usage tips. We hope that these notes will help readers more quickly digest important concepts and avoid common pitfalls.

To make it easier to follow the relationships among features and concepts, we provide extensive forward and backward cross-references.

We have provided sidebar discussions that focus on important concepts and supply additional explanations for topics that programmers new to C++ often find most difficult.

Learning any programming language requires writing programs. To that end, the primer provides extensive examples throughout the text. Source code for the extended examples is available on the Web at the following URL:

http://www.awprofessional.com/cpp_primer

What hasn't changed from earlier versions is that the book remains a comprehensive tutorial introduction to C++. Our intent is to provide a clear, complete and correct guide to the language. We teach the language by presenting a series of examples, which, in addition to explaining language features, show how to make the best use of C++. Although knowledge of C (the language on which C++ was originally based) is not assumed, we do assume the reader has programmed in a modern block-structured language.






Structure of This Book

C++ Primer provides an introduction to the International Standard on C++, covering both the language proper and the extensive library that is part of that standard. Much of the power of C++ comes from its support for programming with abstractions. Learning to program effectively in C++ requires more than learning new syntax and semantics. Our focus is on how to use the features of C++ to write programs that are safe, that can be built quickly, and yet offer performance comparable to the sorts of low-level programs often written in C.

C++ is a large language and can be daunting to new users. Modern C++ can be thought of as comprising three parts:

The low-level language, largely inherited from C

More advanced language features that allow us to define our own data types and to organize large-scale programs and systems

The standard library, which uses these advanced features to provide a set of useful data structures and algorithms

Most texts present C++ in this same order: They start by covering the low-level details and then introduce the the more advanced language features. They explain the standard library only after having covered the entire language. The result, all too often, is that readers get bogged down in issues of low-level programming or the complexities of writing type definitions and never really understand the power of programming in a more abstract way. Needless to say, readers also often do not learn enough to build their own abstractions.

In this edition we take a completely different tack. We start by covering the basics of the language and the library together. Doing so allows you, the reader, to write significant programs. Only after a thorough grounding in using the library and writing the kinds of abstract programs that the libary allowsdo we move on to those features of C++ that will enable you to write your own abstractions.

Parts I and II cover the basic language and library facilities. The focus of these parts is to learn how to write C++ programs and how to use the abstractions from the library. Most C++ programmers need to know essentially everything covered in this portion of the book.

In addition to teaching the basics of C++, the material in Parts I and II serves another important purpose. The library facilities are themselves abstract data types written in C++. The library can be defined using the same class-construction features that are available to any C++ programmer. Our experience in teaching C++ is that by first using well-designed abstract types, readers find it easier to understand how to build their own types.

Parts III through V focus on how we can write our own types. Part III introduces the heart of C++: its support for classes. The class mechanism provides the basis for writing our own abstractions. Classes are also the foundation for object-oriented and generic programming, which we cover in Part IV. The Primer concludes with Part V, which covers advanced features that are of most use in structuring large, complex systems.
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This chapter introduces most of the basic elements of C++: built-in, library, and class types; variables; expressions; statements; and functions. Along the way, we'll briefly explain how to compile and execute a program.

Having read this chapter and worked through the exercises, the reader should be able to write, compile, and execute simple programs. Subsequent chapters will explain in more detail the topics introduced here.

Learning a new programming language requires writing programs. In this chapter, we'll write a program to solve a simple problem that represents a common data-processing task: A bookstore keeps a file of transactions, each of which records the sale of a given book. Each transaction contains an ISBN (International Standard Book Number, a unique identifier assigned to most books published throughout the world), the number of copies sold, and the price at which each copy was sold. Each transaction looks like

0-201-70353-X 4 24.99




where the first element is the ISBN, the second is the number of books sold, and the last is the sales price. Periodically the bookstore owner reads this file and computes the number of copies of each title sold, the total revenue from that book, and the average sales price. We want to supply a program do these computations.

Before we can write this program we need to know some basic features of C++. At a minimum we'll need to know how to write, compile, and execute a simple program. What must this program do? Although we have not yet designed our solution, we know that the program must

Define variables

Do input and output

Define a data structure to hold the data we're managing

Test whether two records have the same ISBN

Write a loop that will process every record in the transaction file

We'll start by reviewing these parts of C++ and then write a solution to our bookstore problem.






1.1. Writing a Simple C++ Program

Every C++ program contains one or more functions, one of which must be named main. A function consists of a sequence of statements that perform the work of the function. The operating system executes a program by calling the function named main. That function executes its constituent statements and returns a value to the operating system.

Here is a simple version of main does nothing but return a value:

int main()

{

return 0;

}




The operating system uses the value returned by main to determine whether the program succeeded or failed. A return value of 0 indicates success.

The main function is special in various ways, the most important of which are that the function must exist in every C++ program and it is the (only) function that the operating system explicitly calls.

We define main the same way we define other functions. A function definition specifies four elements: the return type, the function name, a (possibly empty) parameter list enclosed in parentheses, and the function body. The main function may have only a restricted set of parameters. As defined here, the parameter list is empty; Section 7.2.6 (p. 243) will cover the other parameters that can be defined for main.

The main function is required to have a return type of int, which is the type that represents integers. The int type is a built-in type, which means that the type is defined by the language.

The final part of a function definition, the function body, is a block of statements starting with an open curly brace and ending with a close curly:

{

return 0;

}




The only statement in our program is a return, which is a statement that terminates a function.

Note the semicolon at the end of the return statement. Semicolons mark the end of most statements in C++. They are easy to overlook, but when forgotten can lead to mysterious compiler error messages.





When the return includes a value such as 0, that value is the return value of the function. The value returned must have the same type as the return type of the function or be a type that can be converted to that type. In the case of main the return type must be int, and the value 0 is an int.

On most systems, the return value from main is a status indicator. A return value of 0 indicates the successful completion of main. Any other return value has a meaning that is defined by the operating system. Usually a nonzero return indicates that an error occurred. Each operating system has its own way of telling the user what main returned.

1.1.1. Compiling and Executing Our Program

Having written the program, we need to compile it. How you compile a program depends on your operating system and compiler. For details on how your particular compiler works, you'll need to check the reference manual or ask a knowledgeable colleague.

Many PC-based compilers are run from an integrated development environment (IDE) that bundles the compiler with associated build and analysis tools. These environments can be a great asset in developing complex programs but require a fair bit of time to learn how to use effectively. Most of these environments include a point-and-click interface that allows the programmer to write a program and use various menus to compile and execute the program. Learning how to use such environments is well beyond the scope of this book.

Most compilers, including those that come with an IDE, provide a command-line interface. Unless you are already familiar with using your compiler's IDE, it can be easier to start by using the simpler, command-line interface. Using the command-line interface lets you avoid the overhead of learning the IDE before learning the language.

Program Source File Naming Convention

Whether we are using a command-line interface or an IDE, most compilers expect that the program we want to compile will be stored in a file. Program files are referred to as source files. On most systems, a source file has a name that consists of two parts: a file namefor example, prog1and a file suffix. By convention, the suffix indicates that the file is a program. The suffix often also indicates what language the program is written in and selects which compiler to run. The system that we used to compile the examples in this book treats a file with a suffix of .cc as a C++ program and so we stored this program as

prog1.cc




The suffix for C++ program files depends on which compiler you're running. Other conventions include

prog1.cxx

prog1.cpp

prog1.cp

prog1.C




Invoking the GNU or Microsoft Compilers

The command used to invoke the C++ compiler varies across compilers and operating systems. The most common compilers are the GNU compiler and the Microsoft Visual Studio compilers. By default the command to invoke the GNU compiler is g++:

$ g++ prog1.cc -o prog1




where $ is the system prompt. This command generates an executable file named prog1 or prog1.exe, depending on the operating system. On UNIX, executable files have no suffix; on Windows, the suffix is .exe. The -o prog1 is an argument to the compiler and names the file in which to put the executable file. If the -o prog1 is omitted, then the compiler generates an executable named a.out on UNIX systems and a.exe on Windows.

The Microsoft compilers are invoked using the command cl:

C:\directory> cl -GX prog1.cpp




where C:directory> is the system prompt and directory is the name of the current directory. The command to invoke the compiler is cl, and -GX is an option that is required for programs compiled using the command-line interface. The Microsoft compiler automatically generates an executable with a name that corresponds to the source file name. The executable has the suffix .exe and the same name as the source file name. In this case, the executable is named prog1.exe.

For further information consult your compiler's user's guide.




Running the Compiler from the Command Line

If we are using a command-line interface, we will typically compile a program in a console window (such as a shell window on a UNIX system or a Command Prompt window on Windows). Assuming that our main program is in a file named prog1.cc, we might compile it by using a command such as:

$ CC prog1.cc




where CC names the compiler and $ represents the system prompt. The output of the compiler is an executable file that we invoke by naming it. On our system, the compiler generates the executable in a file named a.exe. UNIX compilers tend to put their executables in a file named a.out. To run an executable we supply that name at the command-line prompt:

$ a.exe




executes the program we compiled. On UNIX systems you sometimes must also specify which directory the file is in, even if it is in the current directory. In such cases, we would write

$ ./a.exe




The "." followed by a slash indicates that the file is in the current directory.

The value returned from main is accessed in a system-dependent manner. On both UNIX and Windows systems, after executing the program, you must issue an appropriate echo command. On UNIX systems, we obtain the status by writing

$ echo $?




To see the status on a Windows system, we write

C:\directory> echo %ERRORLEVEL%




Exercises Section 1.1.1

Exercise 1.1:Review the documentation for your compiler and determine what file naming convention it uses. Compile and run the main program from page 2.

Exercise 1.2:Change the program to return -1. A return value of -1 is often treated as an indicator that the program failed. However, systems vary as to how (or even whether) they report a failure from main. Recompile and rerun your program to see how your system treats a failure indicator from main.










1.2. A First Look at Input/Output

C++ does not directly define any statements to do input or output (IO). Instead, IO is provided by the standard library. The IO library provides an extensive set of facilities. However, for many purposes, including the examples in this book, one needs to know only a few basic concepts and operations.

Most of the examples in this book use the iostream library, which handles formatted input and output. Fundamental to the iostream library are two types named istream and ostream, which represent input and output streams, respectively. A stream is a sequence of characters intended to be read from or written to an IO device of some kind. The term "stream" is intended to suggest that the characters are generated, or consumed, sequentially over time.

1.2.1. Standard Input and Output Objects

The library defines four IO objects. To handle input, we use an object of type istream named cin (pronounced "see-in"). This object is also referred to as the standard input. For output, we use an ostream object named cout (pronounced "see-out"). It is often referred to as the standard output. The library also defines two other ostream objects, named cerr and clog (pronounced "see-err" and "see-log," respectively). The cerr object, referred to as the standard error, is typically used to generate warning and error messages to users of our programs. The clog object is used for general information about the execution of the program.

Ordinarily, the system associates each of these objects with the window in which the program is executed. So, when we read from cin, data is read from the window in which the program is executing, and when we write to cout, cerr, or clog, the output is written to the same window. Most operating systems give us a way of redirecting the input or output streams when we run a program. Using redirection we can associate these streams with files of our choosing.

1.2.2. A Program that Uses the IO Library

So far, we have seen how to compile and execute a simple program, although that program did no work. In our overall problem, we'll have several records that refer to the same ISBN. We'll need to consolidate those records into a single total, implying that we'll need to know how to add the quantities of books sold.

To see how to solve part of that problem, let's start by looking at how we might add two numbers. Using the IO library, we can extend our main program to ask the user to give us two numbers and then print their sum:

#include <iostream>

int main()

{

std::cout << "Enter two numbers:" << std::endl;

int v1, v2;

std::cin >> v1 >> v2;

std::cout << "The sum of " << v1 << " and " << v2

<< " is " << v1 + v2 << std::endl;

return 0;

}




This program starts by printing

Enter two numbers:




on the user's screen and then waits for input from the user. If the user enters

3 7




followed by a newline, then the program produces the following output:

The sum of 3 and 7 is 10




The first line of our program is a preprocessor directive:

#include <iostream>




which tells the compiler that we want to use the iostream library. The name inside angle brackets is a header. Every program that uses a library facility must include its associated header. The #include directive must be written on a single linethe name of the header and the #include must appear on the same line. In general, #include directives should appear outside any function. Typically, all the #include directives for a program appear at the beginning of the file.

Writing to a Stream

The first statement in the body of main executes an expression. In C++ an expression is composed of one or more operands and (usually) an operator. The expressions in this statement use the output operator (the << operator) to print the prompt on the standard output:

std::cout << "Enter two numbers:" << std::endl;




This statement uses the output operator twice. Each instance of the output operator takes two operands: The left-hand operand must be an ostream object; the right-hand operand is a value to print. The operator writes its right-hand operand to the ostream that is its left-hand operand.

In C++ every expression produces a result, which typically is the value generated by applying an operator to its operands. In the case of the output operator, the result is the value of its left-hand operand. That is, the value returned by an output operation is the output stream itself.

The fact that the operator returns its left-hand operand allows us to chain together output requests. The statement that prints our prompt is equivalent to

(std::cout << "Enter two numbers:") << std::endl;




Because (std::cout << "Enter two numbers:") returns its left operand, std::cout, this statement is equivalent to

std::cout << "Enter two numbers:";

std::cout << std::endl;




endl is a special value, called a manipulator, that when written to an output stream has the effect of writing a newline to the output and flushing the buffer associated with that device. By flushing the buffer, we ensure that the user will see the output written to the stream immediately.

Programmers often insert print statements during debugging. Such statements should always flush the stream. Forgetting to do so may cause output to be left in the buffer if the program crashes, leading to incorrect inferences about where the program crashed.





Using Names from the Standard Library

Careful readers will note that this program uses std::cout and std::endl rather than just cout and endl. The prefix std:: indicates that the names cout and endl are defined inside the namespace named std. Namespaces allow programmers to avoid inadvertent collisions with the same names defined by a library. Because the names that the standard library defines are defined in a namespace, we can use the same names for our own purposes.

One side effect of the library's use of a namespace is that when we use a name from the library, we must say explicitly that we want to use the name from the std namespace. Writing std::cout uses the scope operator (the :: operator) to say that we want to use the name cout that is defined in the namespace std. We'll see in Section 3.1 (p. 78) a way that programs often use to avoid this verbose syntax.

Reading From a Stream

Having written our prompt, we next want to read what the user writes. We start by defining two variables named v1 and v2 to hold the input:

int v1, v2;




We define these variables as type int, which is the built-in type representing integral values. These variables are uninitialized, meaning that we gave them no initial value. Our first use of these variables will be to read a value into them, so the fact that they have no initial value is okay.

The next statement

std::cin >> v1 >> v2;




reads the input. The input operator (the >> operator) behaves analogously to the output operator. It takes an istream as its left-hand operand and an object as its right-hand operand. It reads from its istream operand and stores the value it read in its right-hand operand. Like the output operator, the input operator returns its left-hand operand as its result. Because the operator returns its left-hand operand, we can combine a sequence of input requests into a single statement. In other words, this input operation is equivalent to

std::cin >> v1;

std::cin >> v2;




The effect of our input operation is to read two values from the standard input, storing the first in v1 and the second in v2.

Completing the Program

What remains is to print our result:

std::cout << "The sum of " << v1 << " and " << v2

<< " is " << v1 + v2 << std::endl;




This statement, although it is longer than the statement that printed the prompt, is conceptually no different. It prints each of its operands to the standard output. What is interesting is that the operands are not all the same kinds of values. Some operands are string literals, such as

"The sum of "




and others are various int values, such as v1, v2, and the result of evaluating the arithmetic expression:

v1 + v2




The iostream library defines versions of the input and output operators that accept all of the built-in types.

When writing a C++ program, in most places that a space appears we could instead use a newline. One exception to this rule is that spaces inside a string literal cannot be replaced by a newline. Another exception is that spaces are not allowed inside preprocessor directives.





Key Concept: Initialized and Uninitialized Variables

Initialization is an important concept in C++ and one to which we will return throughout this book.

Initialized variables are those that are given a value when they are defined. Uninitialized variables are not given an initial value:

int val1 = 0;     // initialized

int val2;         // uninitialized




It is almost always right to give a variable an initial value, but we are not required to do so. When we are certain that the first use of a variable gives it a new value, then there is no need to invent an initial value. For example, our first nontrivial program on page 6 defined uninitialized variables into which we immediately read values.

When we define a variable, we should give it an initial value unless we are certain that the initial value will be overwritten before the variable is used for any other purpose. If we cannot guarantee that the variable will be reset before being read, we should initialize it.




Exercises Section 1.2.2

Exercise 1.3:Write a program to print "Hello, World" on the standard output.

Exercise 1.4:Our program used the built-in addition operator, +, to generate the sum of two numbers. Write a program that uses the multiplication operator, *, to generate the product of two numbers.

Exercise 1.5:We wrote the output in one large statement. Rewrite the program to use a separate statement to print each operand.

Exercise 1.6:Explain what the following program fragment does:

std::cout << "The sum of " << v1;

<< " and " << v2;

<< " is " << v1 + v2

<< std::endl;




Is this code legal? If so, why? If not, why not?










1.3. A Word About Comments

Before our programs get much more complicated, we should see how C++ handles comments. Comments help the human readers of our programs. They are typically used to summarize an algorithm, identify the purpose of a variable, or clarify an otherwise obscure segment of code. Comments do not increase the size of the executable program. The compiler ignores all comments.

In this book, we italicize comments to make them stand out from the normal program text. In actual programs, whether comment text is distinguished from the text used for program code depends on the sophistication of the programming environment.





There are two kinds of comments in C++: single-line and paired. A single-line comment starts with a double slash (//). Everything to the right of the slashes on the current line is a comment and ignored by the compiler.

The other delimiter, the comment pair (/* */), is inherited from the C language. Such comments begin with a /* and end with the next */. The compiler treats everything that falls between the /* and */ as part of the comment:

#include <iostream>

/* Simple main function: Read two numbers and write their sum */

int main()

{

// prompt user to enter two numbers

std::cout << "Enter two numbers:" << std::endl;

int v1, v2;           // uninitialized

std::cin >> v1 >> v2; // read input

return 0;

}




A comment pair can be placed anywhere a tab, space, or newline is permitted. Comment pairs can span multiple lines of a program but are not required to do so. When a comment pair does span multiple lines, it is often a good idea to indicate visually that the inner lines are part of a multi-line comment. Our style is to begin each line in the comment with an asterisk, thus indicating that the entire range is part of a multi-line comment.

Programs typically contain a mixture of both comment forms. Comment pairs generally are used for multi-line explanations, whereas double slash comments tend to be used for half-line and single-line remarks.

Too many comments intermixed with the program code can obscure the code. It is usually best to place a comment block above the code it explains.

Comments should be kept up to date as the code itself changes. Programmers expect comments to remain accurate and so believe them, even when other forms of system documentation are known to be out of date. An incorrect comment is worse than no comment at all because it may mislead a subsequent reader.

Comment Pairs Do Not Nest

A comment that begins with /* always ends with the next */. As a result, one comment pair cannot occur within another. The compiler error message(s) that result from this kind of program mistake can be mysterious and confusing. As an example, compile the following program on your system:

#include <iostream>

/*

* comment pairs /* */ cannot nest.

* "cannot nest" is considered source code,

* as is the rest of the program

*/

int main()

{

return 0;

}




When commenting out a large section of a program, it can seem easiest to put a comment pair around a region that you want to omit temporarily. The trouble is that if that code already has a comment pair, then the newly inserted comment will terminate prematurely. A better way to temporarily ignore a section of code is to use your editor to insert single-line comment at the beginning of each line of code you want to ignore. That way, you need not worry about whether the code you are commenting out already contains a comment pair.






1.4. Control Structures

Statements execute sequentially: The first statement in a function is executed first, followed by the second, and so on. Of course, few programsincluding the one we'll need to write to solve our bookstore problemcan be written using only sequential execution. Instead, programming languages provide various control structures that allow for more complicated execution paths. This section will take a brief look at some of the control structures provided by C++. Chapter 6 covers statements in detail.

Exercises Section 1.3

Exercise 1.7:Compile a program that has incorrectly nested comments.

Exercise 1.8:Indicate which, if any, of the following output statements, are legal.

std::cout << "/*";

std::cout << "*/";

std::cout << /* "*/" */;




After you've predicted what will happen, test your answer by compiling a program with these three statements. Correct any errors you encounter.





1.4.1. The while Statement

A while statement provides for iterative execution. We could use a while to write a program to sum the numbers from 1 through 10 inclusive as follows:

#include <iostream>

int main()

{

int sum = 0, val = 1;

// keep executing the while until val is greater than 10

while (val <= 10) {

sum += val;  // assigns sum + val to sum

++val;       // add 1 to val

}

std::cout << "Sum of 1 to 10 inclusive is "

<< sum << std::endl;

return 0;

}




This program when compiled and executed will print:

Sum of 1 to 10 inclusive is 55




As before, we begin by including the iostream header and define a main function. Inside main we define two int variables: sum, which will hold our summation, and val, which will represent each of the values from 1 through 10. We give sum an initial value of zero and start val off with the value one.

The important part is the while statement. A while has the form

while (condition) while_body_statement;




A while executes by (repeatedly) testing the condition and executing the associated while_body_statement until the condition is false.

A condition is an expression that is evaluated so that its result can be tested. If the resulting value is nonzero, then the condition is true; if the value is zero then the condition is false.

If the condition is true (the expression evaluates to a value other than zero) then while_body_statement is executed. After executing while_body_statement, the condition is tested again. If condition remains true, then the while_body_statement is again executed. The while continues, alternatively testing the condition and executing while_body_statement until the condition is false.

In this program, the while statement is:

// keep executing the while until val is greater than 10

while (val <= 10) {

sum += val; // assigns sum + val to sum

++val; // add 1 to val

}




The condition in the while uses the less-than-or-equal operator (the <= operator) to compare the current value of val and 10. As long as val is less than or equal to 10, we execute the body of the while. In this case, the body of the while is a block containing two statements:

{

sum += val; // assigns sum + val to sum

++val; // add 1 to val

}




A block is a sequence of statements enclosed by curly braces. In C++, a block may be used wherever a statement is expected. The first statement in the block uses the compound assignment operator, (the += operator). This operator adds its right-hand operand to its left-hand operand. It has the same effect as writing an addition and an assignment:

sum = sum + val; // assign sum + val to sum




Thus, the first statement adds the value of val to the current value of sum and stores the result back into sum.

The next statement

++val; // add 1 to val




uses the prefix increment operator (the ++ operator). The increment operator adds one to its operand. Writing ++val is the same as writing val = val + 1.

After executing the while body we again execute the condition in the while. If the (now incremented) value of val is still less than or equal to 10, then the body of the while is executed again. The loop continues, testing the condition and executing the body, until val is no longer less than or equal to 10.

Once val is greater than 10, we fall out of the while loop and execute the statement following the while. In this case, that statement prints our output, followed by the return, which completes our main program.

Key Concept: Indentation and Formatting of C++ Programs

C++ programs are largely free-format, meaning that the positioning of curly braces, indentation, comments, and newlines usually has no effect on the meaning of our programs. For example, the curly brace that denotes the beginning of the body of main could be on the same line as main, positioned as we have done, at the beginning of the next line, or placed anywhere we'd like. The only requirement is that it be the first nonblank, noncomment character that the compiler sees after the close parenthesis that concludes main's parameter list.

Although we are largely free to format programs as we wish, the choices we make affect the readability of our programs. We could, for example, have written main on a single, long line. Such a definition, although legal, would be hard to read.

Endless debates occur as to the right way to format C or C++ programs. Our belief is that there is no single correct style but that there is value in consistency. We tend to put the curly braces that delimit functions on their own lines. We tend to indent compound input or output expressions so that the operators line up, as we did with the statement that wrote the output in the main function on page 6. Other indentation conventions will become clear as our programs become more complex.

The important thing to keep in mind is that other ways to format programs are possible. When choosing a formatting style, think about how it affects readability and comprehension. Once you've chosen a style, use it consistently.




1.4.2. The for Statement

In our while loop, we used the variable val to control how many times we iterated through the loop. On each pass through the while, the value of val was tested and then in the body the value of val was incremented.

The use of a variable like val to control a loop happens so often that the language defines a second control structure, called a for statement, that abbreviates the code that manages the loop variable. We could rewrite the program to sum the numbers from 1 through 10 using a for loop as follows:

#include <iostream>

int main()

{

int sum = 0;

// sum values from 1 up to 10 inclusive

for (int val = 1; val <= 10; ++val)

sum += val; // equivalent to sum = sum + val


std::cout << "Sum of 1 to 10 inclusive is "

<< sum << std::endl;

return 0;

}




Prior to the for loop, we define sum, which we set to zero. The variable val is used only inside the iteration and is defined as part of the for statement itself. The for statement

for (int val = 1; val <= 10; ++val)

sum += val; // equivalent to sum = sum + val




has two parts: the for header and the for body. The header controls how often the body is executed. The header itself consists of three parts: an init-statement, a condition, and an expression. In this case, the init-statement

int val = 1;




defines an int object named val and gives it an initial value of one. The initstatement is performed only once, on entry to the for. The condition

val <= 10




which compares the current value in val to 10, is tested each time through the loop. As long as val is less than or equal to 10, we execute the for body. Only after executing the body is the expression executed. In this for, the expression uses the prefix increment operator, which as we know adds one to the value of val. After executing the expression, the for retests the condition. If the new value of val is still less than or equal to 10, then the for loop body is executed and val is incremented again. Execution continues until the condition fails.

In this loop, the for body performs the summation

sum += val; // equivalent to sum = sum + val




The body uses the compound assignment operator to add the current value of val to sum, storing the result back into sum.

To recap, the overall execution flow of this for is:

Create val and initialize it to 1.

Test whether val is less than or equal to 10.

If val is less than or equal to 10, execute the for body, which adds val to sum. If val is not less than or equal to 10, then break out of the loop and continue execution with the first statement following the for body.

Increment val.

Repeat the test in step 2, continuing with the remaining steps as long as the condition is true.

When we exit the for loop, the variable val is no longer accessible. It is not possible to use val after this loop terminates. However, not all compilers enforce this requirement.



In pre-Standard C++ names defined in a for header were accessible outside the for itself. This change in the language definition can surprise people accustomed to using an older compiler when they instead use a compiler that adheres to the standard.



Compilation Revisited

Part of the compiler's job is to look for errors in the program text. A compiler cannot detect whether the meaning of a program is correct, but it can detect errors in the form of the program. The following are the most common kinds of errors a compiler will detect.

Syntax errors. The programmer has made a grammatical error in the C++ language. The following program illustrates common syntax errors; each comment describes the error on the following line:

// error: missing ')' in parameter list for main

int main ( {

// error: used colon, not a semicolon after endl

std::cout << "Read each file." << std::endl:

// error: missing quotes around string literal

std::cout << Update master. << std::endl;

// ok: no errors on this line

std::cout << "Write new master." <<std::endl;

// error: missing ';' on return statement

return 0

}




Type errors. Each item of data in C++ has an associated type. The value 10, for example, is an integer. The word "hello" surrounded by double quotation marks is a string literal. One example of a type error is passing a string literal to a function that expects an integer argument.

Declaration errors. Every name used in a C++ program must be declared before it is used. Failure to declare a name usually results in an error message. The two most common declaration errors are to forget to use std:: when accessing a name from the library or to inadvertently misspell the name of an identifier:

#include <iostream>

int main()

{

int v1, v2;

std::cin >> v >> v2; // error: uses " v "not" v1"

// cout not defined, should be std::cout

cout << v1 + v2 << std::endl;

return 0;

}




An error message contains a line number and a brief description of what the compiler believes we have done wrong. It is a good practice to correct errors in the sequence they are reported. Often a single error can have a cascading effect and cause a compiler to report more errors than actually are present. It is also a good idea to recompile the code after each fixor after making at most a small number of obvious fixes. This cycle is known as edit-compile-debug.




Exercises Section 1.4.2

Exercise 1.9:What does the following for loop do? What is the final value of sum?

int sum = 0;

for (int i = -100; i <= 100; ++i)

sum += i;




Exercise 1.10:Write a program that uses a for loop to sum the numbers from 50 to 100. Now rewrite the program using a while.

Exercise 1.11:Write a program using a while loop to print the numbers from 10 down to 0. Now rewrite the program using a for.

Exercise 1.12:Compare and contrast the loops you wrote in the previous two exercises. Are there advantages or disadvantages to using either form?

Exercise 1.13:Compilers vary as to how easy it is to understand their diagnostics. Write programs that contain the common errors discussed in the box on 16. Study the messages the compiler generates so that these messages will be familiar when you encounter them while compiling more complex programs.





1.4.3. The if Statement

A logical extension of summing the values between 1 and 10 is to sum the values between two numbers our user supplies. We might use the numbers directly in our for loop, using the first input as the lower bound for the range and the second as the upper bound. However, if the user gives us the higher number first, that strategy would fail: Our program would exit the for loop immediately. Instead, we should adjust the range so that the larger number is the upper bound and the smaller is the lower. To do so, we need a way to see which number is larger.

Like most languages, C++ provides an if statement that supports conditional execution. We can use an if to write our revised sum program:

#include <iostream>

int main()

{

std::cout << "Enter two numbers:" << std::endl;

int v1, v2;

std::cin >> v1 >> v2; // read input

// use smaller number as lower bound for summation

// and larger number as upper bound

int lower, upper;

if (v1 <= v2) {

lower = v1;

upper = v2;

} else {

lower = v2;

upper = v1;

}

int sum = 0;

// sum values from lower up to and including upper

for (int val = lower; val <= upper; ++val)

sum += val; // sum = sum + val


std::cout << "Sum of " << lower

<< " to " << upper

<< " inclusive is "

<< sum << std::endl;

return 0;

}




If we compile and execute this program and give it as input the numbers 7 and 3, then the output of our program will be

Sum of 3 to 7 inclusive is 25




Most of the code in this program should already be familiar from our earlier examples. The program starts by writing a prompt to the user and defines four int variables. It then reads from the standard input into v1 and v2. The only new code is the if statement

// use smaller number as lower bound for summation

// and larger number as upper bound

int lower, upper;

if (v1 <= v2) {

lower = v1;

upper = v2;

} else {

lower = v2;

upper = v1;

}




The effect of this code is to set upper and lower appropriately. The if condition tests whether v1 is less than or equal to v2. If so, we perform the block that immediately follows the condition. This block contains two statements, each of which does an assignment. The first statement assigns v1 to lower and the second assigns v2 to upper.

If the condition is falsethat is, if v1 is larger than v2then we execute the statement following the else. Again, this statement is a block consisting of two assignments. We assign v2 to lower and v1 to upper.

1.4.4. Reading an Unknown Number of Inputs

Another change we might make to our summation program on page 12 would be to allow the user to specify a set of numbers to sum. In this case we can't know how many numbers we'll be asked to add. Instead, we want to keep reading numbers until the program reaches the end of the input. When the input is finished, the program writes the total to the standard output:

#include <iostream>

int main()

{

int sum = 0, value;

// read till end-of-file, calculating a running total of all values read

while (std::cin >> value)

sum += value; // equivalent to sum = sum + value

std::cout << "Sum is: " << sum << std::endl;

return 0;

}




If we give this program the input

3 4 5 6




then our output will be

Sum is: 18




Exercises Section 1.4.3

Exercise 1.14:What happens in the program presented in this section if the input values are equal?

Exercise 1.15:Compile and run the program from this section with two equal values as input. Compare the output to what you predicted in the previous exercise. Explain any discrepancy between what happened and what you predicted.

Exercise 1.16:Write a program to print the larger of two inputs supplied by the user.

Exercise 1.17:Write a program to ask the user to enter a series of numbers. Print a message saying how many of the numbers are negative numbers.





As usual, we begin by including the necessary headers. The first line inside main defines two int variables, named sum and value. We'lluse value to hold each number we read, which we do inside the condition in the while:

while (std::cin >> value)




What happens here is that to evaluate the condition, the input operation

std::cin >> value




is executed, which has the effect of reading the next number from the standard input, storing what was read in value. The input operator (Section 1.2.2, p. 8) returns its left operand. The condition tests that result, meaning it tests std::cin.

When we use an istream as a condition, the effect is to test the state of the stream. If the stream is validthat is, if it is still possible to read another input then the test succeeds. An istream becomes invalid when we hit end-of-file or encounter an invalid input, such as reading a value that is not an integer. An istream that is in an invalid state will cause the condition to fail.

Until we do encounter end-of-file (or some other input error), the test will succeed and we'll execute the body of the while. That body is a single statement that uses the compound assignment operator. This operator adds its right-hand operand into the left hand operand.

Entering an End-of-file from the Keyboard

Operating systems use different values for end-of-file. On Windows systems we enter an end-of-file by typing a control-zsimultaneously type the "ctrl" key and a "z." On UNIX systems, including Mac OS-X machines, it is usually control-d.




Once the test fails, the while terminates and we fall through and execute the statement following the while. That statement prints sum followed by endl, which prints a newline and flushes the buffer associated with cout. Finally, we execute the return, which as usual returns zero to indicate success.

Exercises Section 1.4.4

Exercise 1.18:Write a program that prompts the user for two numbers and writes each number in the range specified by the two numbers to the standard output.

Exercise 1.19:What happens if you give the numbers 1000 and 2000 to the program written for the previous exercise? Revise the program so that it never prints more than 10 numbers per line.

Exercise 1.20:Write a program to sum the numbers in a user-specified range, omitting the if test that sets the upper and lower bounds. Predict what happens if the input is the numbers 7 and 3, in that order. Now run the program giving it the numbers 7 and 3, and see if the results match your expectation. If not, restudy the discussion on the for and while loop until you understand what happened.










1.5. Introducing Classes

The only remaining feature we need to understand before solving our bookstore problem is how to write a data structure to represent our transaction data. In C++ we define our own data structure by defining a class. The class mechanism is one of the most important features in C++. In fact, a primary focus of the design of C++ is to make it possible to define class types that behave as naturally as the built-in types themselves. The library types that we've seen already, such as istream and ostream, are all defined as classesthat is, they are not strictly speaking part of the language.

Complete understanding of the class mechanism requires mastering a lot of information. Fortunately, it is possible to use a class that someone else has written without knowing how to define a class ourselves. In this section, we'll describe a simple class that we can use in solving our bookstore problem. We'll implement this class in the subsequent chapters as we learn more about types, expressions, statements, and functionsall of which are used in defining classes.

To use a class we need to know three things:

What is its name?

Where is it defined?

What operations does it support?

For our bookstore problem, we'll assume that the class is named Sales_item and that it is defined in a header named Sales_item.h.

1.5.1. The Sales_item Class

The purpose of the Sales_item class is to store an ISBN and keep track of the number of copies sold, the revenue, and average sales price for that book. How these data are stored or computed is not our concern. To use a class, we need not know anything about how it is implemented. Instead, what we need to know is what operations the class provides.

As we've seen, when we use library facilities such as IO, we must include the associated headers. Similarly, for our own classes, we must make the definitions associated with the class available to the compiler. We do so in much the same way. Typically, we put the class definition into a file. Any program that wants to use our class must include that file.

Conventionally, class types are stored in a file with a name that, like the name of a program source file, has two parts: a file name and a file suffix. Usually the file name is the same as the class defined in the header. The suffix usually is .h, but some programmers use .H, .hpp, or .hxx. Compilers usually aren't picky about header file names, but IDEs sometimes are. We'll assume that our class is defined in a file named Sales_item.h.

Operations on Sales_item Objects

Every class defines a type. The type name is the same as the name of the class. Hence, our Sales_item class defines a type named Sales_item. As with the built-in types, we can define a variable of a class type. When we write

Sales_item item;




we are saying that item is an object of type Sales_item. We often contract the phrase "an object of type Sales_item" to"aSales_ item object" or even more simply to "a Sales_item."

In addition to being able to define variables of type Sales_item, we can perform the following operations on Sales_item objects:

Use the addition operator, +, to add two Sales_items

Use the input operator, << to read a Sales_item object,

Use the output operator, >> to write a Sales_item object

Use the assignment operator, =, to assign one Sales_item object to another

Call the same_isbn function to determine if two Sales_items refer to the same book

Reading and Writing Sales_items

Now that we know the operations that the class provides, we can write some simple programs to use this class. For example, the following program reads data from the standard input, uses that data to build a Sales_item object, and writes that Sales_item object back onto the standard output:

#include <iostream>

#include "Sales_item.h"

int main()

{

Sales_item book;

// read ISBN, number of copies sold, and sales price

std::cin >> book;

// write ISBN, number of copies sold, total revenue, and average price

std::cout << book << std::endl;

return 0;

}




If the input to this program is

0-201-70353-X 4 24.99




then the output will be

0-201-70353-X 4 99.96 24.99




Our input said that we sold four copies of the book at $24.99 each, and the output indicates that the total sold was four, the total revenue was $99.96, and the average price per book was $24.99.

This program starts with two #include directives, one of which uses a new form. The iostream header is defined by the standard library; the Sales_item header is not. Sales_item is a type that we ourselves have defined. When we use our own headers, we use quotation marks (" ") to surround the header name.

Headers for the standard library are enclosed in angle brackets (< >). Nonstandard headers are enclosed in double quotes (" ").





Inside main we start by defining an object, named book, which we'll use to hold the data that we read from the standard input. The next statement reads into that object, and the third statement prints it to the standard output followed as usual by printing endl to flush the buffer.

Key Concept: Classes Define Behavior

As we go through these programs that use Sales_items, the important thing to keep in mind is that the author of the Sales_item class defined all the actions that can be performed by objects of this class. That is, the author of the Sales_item data structure defines what happens when a Sales_item object is created and what happens when the addition or the input and output operators are applied to Sales_item objects, and so on.

In general, only the operations defined by a class can be used on objects of the class type. For now, the only operations we know we can peeform on Sales_item objects are the ones listed on page 21.

We'll see how these operations are defined in Sections 7.7.3 and 14.2.




Adding Sales_items

A slightly more interesting example adds two Sales_item objects:

#include <iostream>

#include "Sales_item.h"

int main()

{

Sales_item item1, item2;

std::cin >> item1 >> item2;   // read a pair of transactions

std::cout << item1 + item2 << std::endl; // print their sum

return 0;

}




If we give this program the following input

0-201-78345-X 3 20.00

0-201-78345-X 2 25.00




our output is

0-201-78345-X 5 110 22




This program starts by including the Sales_item and iostream headers. Next we define two Sales_item objects to hold the two transactions that we wish to sum. The output expression does the addition and prints the result. We know from the list of operations on page 21 that adding two Sales_items together creates a new object whose ISBN is that of its operands and whose number sold and revenue reflect the sum of the corresponding values in its operands. We also know that the items we add must represent the same ISBN.

It's worth noting how similar this program looks to the one on page 6: We read two inputs and write their sum. What makes it interesting is that instead of reading and printing the sum of two integers, we're reading and printing the sum of two Sales_item objects. Moreover, the whole idea of "sum" is different. In the case of ints we are generating a conventional sumthe result of adding two numeric values. In the case of Sales_item objects we use a conceptually new meaning for sumthe result of adding the components of two Sales_item objects.

Exercises Section 1.5.1

Exercise 1.21:The Web site (http://www.awprofessional.com/cpp_primer) contains a copy of Sales_item.h in the Chapter 1 code directory. Copy that file to your working directory. Write a program that loops through a set of book sales transactions, reading each transaction and writing that transaction to the standard output.

Exercise 1.22:Write a program that reads two Sales_item objects that have the same ISBN and produces their sum.

Exercise 1.23:Write a program that reads several transactions for the same ISBN. Write the sum of all the transactions that were read.





1.5.2. A First Look at Member Functions

Unfortunately, there is a problem with the program that adds Sales_items. What should happen if the input referred to two different ISBNs? It doesn't make sense to add the data for two different ISBNs together. To solve this problem, we'll first check whether the Sales_item operands refer to the same ISBNs:

#include <iostream>

#include "Sales_item.h"

int main()

{

Sales_item item1, item2;

std::cin >> item1 >> item2;

// first check that item1 and item2 represent the same book

if (item1.same_isbn(item2)) {

std::cout << item1 + item2 << std::endl;

return 0;    // indicate success

} else {

std::cerr << "Data must refer to same ISBN"

<< std::endl;

return -1; // indicate failure

}

}




The difference between this program and the previous one is the if test and its associated else branch. Before explaining the if condition, we know that what this program does depends on the condition in the if. If the test succeeds, then we write the same output as the previous program and return 0 indicating success. If the test fails, we execute the block following the else, which prints a message and returns an error indicator.

What Is a Member Function?

The if condition

// first check that item1 and item2 represent the same book

if (item1.same_isbn(item2)) {




calls a member function of the Sales_item object named item1. A member function is a function that is defined by a class. Member functions are sometimes referred to as the methods of the class.

Member functions are defined once for the class but are treated as members of each object. We refer to these operations as member functions because they (usually) operate on a specific object. In this sense, they are members of the object, even though a single definition is shared by all objects of the same type.

When we call a member function, we (usually) specify the object on which the function will operate. This syntax uses the dot operator (the "." operator):

item1.same_isbn




means "the same_isbn member of the object named item1." The dot operator fetches its right-hand operand from its left. The dot operator applies only to objects of class type: The left-hand operand must be an object of class type; the right-hand operand must name a member of that type.

Unlike most other operators, the right operand of the dot (".") operator is not an object or value; it is the name of a member.





When we use a member function as the right-hand operand of the dot operator, we usually do so to call that function. We execute a member function in much the same way as we do any function: To call a function, we follow the function name by the call operator (the "()" operator). The call operator is a pair of parentheses that encloses a (possibly empty) list of arguments that we pass to the function.

The same_isbn function takes a single argument, and that argument is another Sales_item object. The call

item1.same_isbn(item2)




passes item2 as an argument to the function named same_isbn that is a member of the object named item1. This function compares the ISBN part of its argument, item2, to the ISBN in item1, the object on which same_isbn is called. Thus, the effect is to test whether the two objects refer to the same ISBN.

If the objects refer to the same ISBN, we execute the statement following the if, which prints the result of adding the two Sales_item objects together. Otherwise, if they refer to different ISBNs, we execute the else branch, which is a block of statements. The block prints an appropriate error message and exits the program, returning -1. Recall that the return from main is treated as a status indicator. In this case, we return a nonzero value to indicate that the program failed to produce the expected result.






1.6. The C++ Program

Now we are ready to solve our original bookstore problem: We need to read a file of sales transactions and produce a report that shows for each book the total revenue, average sales price, and the number of copies sold.

Exercises Section 1.5.2

Exercise 1.24:Write a program that reads several transactions. For each new transaction that you read, determine if it is the same ISBN as the previous transaction, keeping a count of how many transactions there are for each ISBN. Test the program by giving multiple transactions. These transactions should represent multiple ISBNs but the records for each ISBN should be grouped together.





We'll assume that all of the transactions for a given ISBN appear together. Our program will combine the data for each ISBN in a Sales_item object named total. Each transaction we read from the standard input will be stored in a second Sales_item object named TRans. Each time we read a new transaction we'll compare it to the Sales_item object in total. If the objects refer to the same ISBN, we'll update total. Otherwise we'll print the value in total and reset it using the transaction we just read.

#include <iostream>

#include "Sales_item.h"

int main()

{

//  declare variables to hold running sum and data for the next record

Sales_item total, trans;

//  is there data to process?

if (std::cin >> total) {

// if so, read the transaction records

while (std::cin >> trans)

if  (total.same_isbn(trans))

//  match: update the running total

total = total + trans;

else {

//  no match: print & assign to total

std::cout << total << std::endl;

total = trans;

}

//  remember to print last record

std::cout << total << std::endl;

} else {

//  no input!, warn the user

std::cout << "No data?!" << std::endl;

return -1;  //  indicate failure

}

return 0;

}




This program is the most complicated one we've seen so far, but it uses only facilities that we have already encountered. As usual, we begin by including the headers that we use: iostream from the library and Sales_item.h, which is our own header.

Inside main we define the objects we need: total, which we'll use to sum the data for a given ISBN, and trans, which will hold our transactions as we read them. We start by reading a transaction into total and testing whether the read was successful. If the read fails, then there are no records and we fall through to the outermost else branch, which prints a message to warn the user that there was no input.

Assuming we have successfully read a record, we execute the code in the if branch. The first statement is a while that will loop through all the remaining records. Just as we did in the program on page 18, our while condition reads a value from the standard input and then tests that valid data was actually read. In this case, we read a Sales_item object into TRans. As long as the read succeeds, we execute the body of the while.

The body of the while is a single if statement. We test whether the ISBNs are equal, and if so we add the two objects and store the result in total. If the ISBNs are not equal, we print the value stored in total and reset total by assigning trans to it. After execution of the if, we return to the condition in the while, reading the next transaction and so on until we run out of records.

Once the while completes, we still must write the data associated with the last ISBN. When the while terminates, total contains the data for the last ISBN in the file, but we had no chance to print it. We do so in the last statement of the block that concludes the outermost if statement.

Exercises Section 1.6

Exercise 1.25:Using the Sales_item.h header from the Web site, compile and execute the bookstore program presented in this section.

Exercise 1.26:In the bookstore program we used the addition operator and not the compound assignment operator to add trans to total. Why didn't we use the compound assignment operator?










Chapter Summary

This chapter introduced enough of C++ to let the reader compile and execute simple C++ programs. We saw how to define a main function, which is the function that is executed first in any C++ program. We also saw how to define variables, how to do input and output, and how to write if, for, and while statements. The chapter closed by introducing the most fundamental facility in C++: the class. In this chapter we saw how to create and use objects of a given class. Later chapters show how to define our own classes.






Defined Terms

argument

A value passed to a function when it is called.




block

Sequence of statements enclosed in curly braces.




buffer

A region of storage used to hold data. IO facilities often store input (or output) in a buffer and read or write the buffer independently of actions in the program. Output buffers usually must be explicitly flushed to force the buffer to be written. By default, reading cin flushes cout; cout is also flushed when the program ends normally.




built-in type

A type, such as int, defined by the language.




cerr

ostream object tied to the standard error, which is often the same stream as the standard output. By default, writes to cerr are not buffered. Usually used for error messages or other output that is not part of the normal logic of the program.




cin

istream object used to read from the standard input.




class

C++ mechanism for defining our own data structures. The class is one of the most fundamental features in C++. Library types, such as istream and ostream, are classes.




class type

A type defined by a class. The name of the type is the class name.




clog

ostream object tied to the standard error. By default, writes to clog are buffered. Usually used to report information about program execution to a log file.




comments

Program text that is ignored by the compiler. C++ has two kinds of comments: single-line and paired. Single-line comments start with a //. Everything from the // to the end of the line is a comment. Paired comments begin with a /* and include all text up to the next */.




condition

An expression that is evaluated as true or false. An arithmetic expression that evaluates to zero is false; any other value yields true.




cout

ostream object used to write to the standard output. Ordinarily used to write the output of a program.




curly brace

Curly braces delimit blocks. An open curly ({) starts a block; a close curly (}) ends one.




data structure

A logical grouping of data and operations on that data.




edit-compile-debug

The process of getting a program to execute properly.




end-of-file

System-specific marker in a file that indicates that there is no more input in the file.




expression

The smallest unit of computation. An expression consists of one or more operands and usually an operator. Expressions are evaluated to produce a result. For example, assuming i and j are ints, then i + j is an arithmetic addition expression and yields the sum of the two int values. Expressions are covered in more detail in Chapter 5.




for statement

Control statement that provides iterative execution. Often used to step through a data structure or to repeat a calculation a fixed number of times.




function

A named unit of computation.




function body

Statement block that defines the actions performed by a function.




function name

Name by which a function is known and can be called.




header

A mechanism whereby the definitions of a class or other names may be made available to multiple programs. A header is included in a program through a #include directive.




if statement

Conditional execution based on the value of a specified condition. If the condition is true, the if body is executed. If not, control flows to the statement following the else if there is one or to the statement following the if if there is no else.




iostream

library type providing stream-oriented input and output.




istream

Library type providing stream-oriented input.




library type

A type, such as istream, defined by the standard library.




main function

Function called by the operating system when executing a C++ program. Each program must have one and only one function named main.




manipulator

Object, such as std::endl, that when read or written "manipulates" the stream itself. Section A.3.1 (p. 825) covers manipulators in more detail.




member function

Operation defined by a class. Member functions ordinarily are called to operate on a specific object.




method

Synonym for member function.




namespace

Mechanism for putting names defined by a library into a single place. Namespaces help avoid inadvertent name clashes. The names defined by the C++ library are in the namespace std.




ostream

Library type providing stream-oriented output.




parameter list

Part of the definition of a function. Possibly empty list that specifies what arguments can be used to call the function.




preprocessor directive

An instruction to the C++ preprocessor. #include is a preprocessor directive. Preprocessor directives must appear on a single line. We'll learn more about the preprocessor in Section 2.9.2.




return type

Type of the value returned by a function.




source file

Term used to describe a file that contains a C++ program.




standard error

An output stream intended for use for error reporting. Ordinarily, on a windowing operating system, the standard output and the standard error are tied to the window in which the program is executed.




standard input

The input stream that ordinarily is associated by the operating system with the window in which the program executes.




standard library

Collection of types and functions that every C++ compiler must support. The library provides a rich set of capabilities including the types that support IO. C++ programmers tend to talk about "the library," meaning the entire standard library or about particular parts of the library by referring to a library type. For example, programmers also refer to the "iostream library," meaning the part of the standard library defined by the iostream classes.




standard output

The output stream that ordinarily is associated by the operating system with the window in which the program executes.




statement

The smallest independent unit in a C++ program. It is analogous to a sentence in a natural language. Statements in C++ generally end in semicolons.




std

Name of the namespace used by the standard library. std::cout indicates that we're using the name cout defined in the std namespace.




string literal

Sequence of characters enclosed in double quotes.




uninitialized variable

Variable that has no initial value specified. There are no uninitialized variables of class type. Variables of class type for which no initial value is specified are initialized as specified by the class definition. You must give a value to an uninitialized variable before attempting to use the variable's value. Uninitialized variables can be a rich source of bugs.




variable

A named object.




while statement

An iterative control statement that executes the statement that is the while body as long as a specified condition is true. The body is executed zero or more times, depending on the truth value of the condition.




() operator

The call operator: A pair of parentheses "()" following a function name. The operator causes a function to be invoked. Arguments to the function may be passed inside the parentheses.




++ operator

Increment operator. Adds one to the operand; ++i is equivalent to i = i+ 1.




+= operator

A compound assignment operator. Adds right-hand operand to the left and stores the result back into the left-hand operand; a += b is equivalent to a =a + b.




. operator

Dot operator. Takes two operands: the left-hand operand is an object and the right is the name of a member of that object. The operator fetches that member from the named object.




:: operator

Scope operator. We'll see more about scope in Chapter 2. Among other uses, the scope operator is used to access names in a namespace. For example, std::cout says to use the name cout from the namespace std.




= operator

Assigns the value of the right-hand operand to the object denoted by the left-hand operand.




<< operator

Output operator. Writes the right-hand operand to the output stream indicated by the left-hand operand: cout << "hi" writes hi to the standard output. Output operations can be chained together: cout << "hi << "bye" writes hibye.




>> operator

Input operator. Reads from the input stream specified by the left-hand operand into the right-hand operand: cin >> i reads the next value on the standard input into i. Input operations can be chained together: cin >> i >> j reads first into i and then into j.




== operator

The equality operator. Tests whether the left-hand operand is equal to the right-hand.




!= operator

Assignment operator. Tests whether the left-hand operand is not equal to the right-hand.




<= operator

The less-than-or-equal operator. Tests whether the left-hand operand is less than or equal to the right-hand.




< operator

The less-than operator. Tests whether the left-hand operand is less than the right-hand.




>= operator

Greater-than-or-equal operator. Tests whether the left-hand operand is greater than or equal to the right-hand.




> operator

Greater-than operator. Tests whether the left-hand operand is greater than the right-hand.










Part I: The Basics

Programming languages have distinctive features that determine the kinds of applications for which they are well suited. They also share many fundamental attributes. Essentially all languages provide:

Built-in data types such as integers, characters, and so forth

Expressions and statements to manipulate values of these types

Variables, which let us give names to the objects we use

Control structures, such as if or while, that allow us to conditionally execute or repeat a set of actions

Functions that let us abstract actions into callable units of computation

Most modern programming languages supplement this basic set of features in two ways: They let programmers extend the language by defining their own data types, and they provide a set of library routines that define useful functions and data types not otherwise built into the language.

In C++, as in most programming languages, the type of an object determines what operations can be performed on it. Depending on the type of the objects involved, a statement might or might not be legal. Some languages, notably Smalltalk and Python, check the types involved in expressions at run time. In contrast, C++ is a statically typed language; type-checking is done at compile time. As a consequence, the compiler must be told the type of every name used in the program before that name can be used.

C++ provides a set of built-in data types, operators to manipulate those types, and a small set of statements for program flow control. These elements form an alphabet with which many large, complex real-world systems can and have been written. At this basic level, C++ is a simple language. Its expressive power arises from its support for mechanisms that allow the programmer to define new data structures.

Perhaps the most important feature in C++ is the class, which allows programmers to define their own data types. In C++ such types are sometimes called "class types" to distinguish them from the types that are built into the language. Some languages let programmers define data types that specify only what data make up the type. Others, like C++, allow programmers to define types that include operations as well as data. One of the primary design goals of C++ is to let programmers define their own types that are as easy to use as the built-in types. The Standard C++ library uses these features to implement a rich library of class types and associated functions.

The first step in mastering C++learning the basics of the language and libraryis the topic of Part I. Chapter 2 covers the built-in data types and looks briefly at the mechanisms for defining our own new types. Chapter 3 introduces two of the most fundamental library types: string and vector. Arrays, which are covered in Chapter 4, are a lower-level data structure built into C++ and many other languages. Arrays are similar to vectors but harder to use. Chapters 5 through 7 cover expressions, statements, and functions. This part concludes in Chapter 8, which covers the most important facilities from the IO library.
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Types are fundamental to any program. They tell us what our data mean and what operations we can perform on our data.

C++ defines several primitive types: characters, integers, floating-point numbers, and so on. The language also provides mechanisms that let us define our own data types. The library uses these mechanisms to define more complex types such as variable-length character strings, vectors, and so on. Finally, we can modify existing types to form compound types. This chapter covers the built-in types and begins our coverage of how C++ supports more complicated types.

Types determine what the data and operations in our programs mean. As we saw in Chapter 1, the same statement

i =i +j;




can mean different things depending on the types of i and j. If i and j are integers, then this statement has the ordinary, arithmetic meaning of +. However, if i and j are Sales_item objects, then this statement adds the components of these two objects.

In C++ the support for types is extensive: The language itself defines a set of primitive types and ways in which we can modify existing types. It also provides a set of features that allow us to define our own types. This chapter begins our exploration of types in C++ by covering the built-in types and showing how we associate a type with an object. It also introduces ways we can both modify types and can build our own types.







2.1. Primitive Built-in Types

C++ defines a set of arithmetic types, which represent integers, floating-point numbers, and individual characters and boolean values. In addition, there is a special type named void. The void type has no associated values and can be used in only a limited set of circumstances. The void type is most often used as the return type for a function that has no return value.

The size of the arithmetic types varies across machines. By size, we mean the number of bits used to represent the type. The standard guarantees a minimum size for each of the arithmetic types, but it does not prevent compilers from using larger sizes. Indeed, almost all compilers use a larger size for int than is strictly required. Table 2.1 (p. 36) lists the built-in arithmetic types and the associated minimum sizes.

Table 2.1. C++: Arithmetic TypesTypeMeaningMinimum Size

boolbooleanNA

charcharacter8 bits

wchar_twide character16 bits

shortshort integer16 bits

intinteger16 bits

longlong integer32 bits

floatsingle-precision floating-point6 significant digits

doubledouble-precision floating-point10 significant digits

long doubleextended-precision floating-point10 significant digits




Because the number of bits varies, the maximum (or minimum) values that these types can represent also vary by machine.





2.1.1. Integral Types

The arithmetic types that represent integers, characters, and boolean values are collectively referred to as the integral types.

There are two character types: char and wchar_t. The char type is guaranteed to be big enough to hold numeric values that correspond to any character in the machine's basic character set. As a result, chars are usually a single machine byte. The wchar_t type is used for extended character sets, such as those used for Chinese and Japanese, in which some characters cannot be represented within a single char.

The types short, int, and long represent integer values of potentially different sizes. Typically, shorts are represented in half a machine word, ints in a machine word, and longs in either one or two machine words (on 32-bit machines, ints and longs are usually the same size).

Machine-Level Representation of The Built-in Types

The C++ built-in types are closely tied to their representation in the computer's memory. Computers store data as a sequence of bits, each of which holds either 0 or 1. A segment of memory might hold

00011011011100010110010000111011 ...




At the bit level, memory has no structure and no meaning.

The most primitive way we impose structure on memory is by processing it in chunks. Most computers deal with memory as chunks of bits of particular sizes, usually powers of 2. They usually make it easy to process 8, 16, or 32 bits at a time, and chunks of 64 and 128 bits are becoming more common. Although the exact sizes can vary from one machine to another, we usually refer to a chunk of 8 bits as a "byte" and 32 bits, or 4 bytes, as a "word."

Most computers associate a numbercalled an addresswith each byte in memory. Given a machine that has 8-bit bytes and 32-bit words, we might represent a word of memory as follows:

73642400011011

73642501110001

73642601100100

73642700111011




In this illustration, each byte's address is shown on the left, with the 8 bits of the byte following the address.

We can use an address to refer to any of several variously sized collections of bits starting at that address. It is possible to speak of the word at address 736424 or the byte at address 736426. We can say, for example, that the byte at address 736425 is not equal to the byte at address 736427.

To give meaning to the byte at address 736425, we must know the type of the value stored there. Once we know the type, we know how many bits are needed to represent a value of that type and how to interpret those bits.

If we know that the byte at location 736425 has type "unsigned 8-bit integer," then we know that the byte represents the number 112. On the other hand, if that byte is a character in the ISO-Latin-1 character set, then it represents the lower-case letter q. The bits are the same in both cases, but by ascribing different types to them, we interpret them differently.




The type bool represents the truth values, true and false. We can assign any of the arithmetic types to a bool. An arithmetic type with value 0 yields a bool that holds false. Any nonzero value is treated as TRue.

Signed and Unsigned Types

The integral types, except the boolean type, may be either signed or unsigned. As its name suggests, a signed type can represent both negative and positive numbers (including zero), whereas an unsigned type represents only values greater than or equal to zero.

The integers, int, short, and long, are all signed by default. To get an unsigned type, the type must be specified as unsigned, such as unsigned long. The unsigned int type may be abbreviated as unsigned. That is, unsigned with no other type implies unsigned int.

Unlike the other integral types, there are three distinct types for char: plain char, signed char, and unsigned char. Although there are three distinct types, there are only two ways a char can be represented. The char type is respresented using either the signed char or unsigned char version. Which representation is used for char varies by compiler.

How Integral Values Are Represented

In an unsigned type, all the bits represent the value. If a type is defined for a particular machine to use 8 bits, then the unsigned version of this type could hold the values 0 through 255.

The C++ standard does not define how signed types are represented at the bit level. Instead, each compiler is free to decide how it will represent signed types. These representations can affect the range of values that a signed type can hold. We are guaranteed that an 8-bit signed type will hold at least the values from 127 through 127; many implementations allow values from 128 through 127.

Under the most common strategy for representing signed integral types, we can view one of the bits as a sign bit. Whenever the sign bit is 1, the value is negative; when it is 0, the value is either 0 or a positive number. An 8-bit integral signed type represented using a sign-bit can hold values from 128 through 127.

Assignment to Integral Types

The type of an object determines the values that the object can hold. This fact raises the question of what happens when one tries to assign a value outside the allowable range to an object of a given type. The answer depends on whether the type is signed or unsigned.

For unsigned types, the compiler must adjust the out-of-range value so that it will fit. The compiler does so by taking the remainder of the value modulo the number of distinct values the unsigned target type can hold. An object that is an 8-bit unsigned char, for example, can hold values from 0 through 255 inclusive. If we assign a value outside this range, the compiler actually assigns the remainder of the value modulo 256. For example, we might attempt to assign the value 336 to an 8-bit signed char. If we try to store 336 in our 8-bit unsigned char, the actual value assigned will be 80, because 80 is equal to 336 modulo 256.

For the unsigned types, a negative value is always out of range. An object of unsigned type may never hold a negative value. Some languages make it illegal to assign a negative value to an unsigned type, but C++ does not.

In C++ it is perfectly legal to assign a negative number to an object with unsigned type. The result is the negative value modulo the size of the type. So, if we assign 1 to an 8-bit unsigned char, the resulting value will be 255, which is 1 modulo 256.





When assigning an out-of-range value to a signed type, it is up to the compiler to decide what value to assign. In practice, many compilers treat signed types similarly to how they are required to treat unsigned types. That is, they do the assignment as the remainder modulo the size of the type. However, we are not guaranteed that the compiler will do so for the signed types.

2.1.2. Floating-Point Types

The types float, double, and long double represent floating-point single-, double-, and extended-precision values. Typically, floats are represented in one word (32 bits), doubles in two words (64 bits), and long double in either three or four words (96 or 128 bits). The size of the type determines the number of significant digits a floating-point value might contain.

The float type is usually not precise enough for real programsfloat is guaranteed to offer only 6 significant digits. The double type guarantees at least 10 significant digits, which is sufficient for most calculations.










2.2. Literal Constants

A value, such as 42, in a program is known as a literal constant: literal because we can speak of it only in terms of its value; constant because its value cannot be changed. Every literal has an associated type. For example, 0 is an int and 3.14159 is a double. Literals exist only for the built-in types. There are no literals of class types. Hence, there are no literals of any of the library types.

Advice: Using the Built-in Arithmetic Types

The number of integral types in C++ can be bewildering. C++, like C, is designed to let programs get close to the hardware when necessary, and the integral types are defined to cater to the peculiarities of various kinds of hardware. Most programmers can (and should) ignore these complexities by restricting the types they actually use.

In practice, many uses of integers involve counting. For example, programs often count the number of elements in a data structure such as a vector or an array. We'll see in Chapters 3 and 4 that the library defines a set of types to use when dealing with the size of an object. When counting such elements it is always right to use the library-defined type intended for this purpose. When counting in other circumstances, it is usually right to use an unsigned value. Doing so avoids the possibility that a value that is too large to fit results in a (seemingly) negative result.

When performing integer arithmetic, it is rarely right to use shorts. In most programs, using shorts leads to mysterious bugs when a value is assigned to a short that is bigger than the largest number it can hold. What happens depends on the machine, but typically the value "wraps around" so that a number too large to fit turns into a large negative number. For the same reason, even though char is an integral type, the char type should be used to hold characters and not for computation. The fact that char is signed on some implementations and unsigned on others makes it problematic to use it as a computational type.

On most machines, integer calculations can safely use int. Technically speaking, an int can be as small as 16 bitstoo small for most purposes. In practice, almost all general-purpose machines use 32-bits for ints, which is often the same size used for long. The difficulty in deciding whether to use int or long occurs on machines that have 32-bit ints and 64-bit longs. On such machines, the run-time cost of doing arithmetic with longs can be considerably greater than doing the same calculation using a 32-bit int. Deciding whether to use int or long requires detailed understanding of the program and the actual run-time performance cost of using long versus int.

Determining which floating-point type to use is easier: It is almost always right to use double. The loss of precision implicit in float is significant, whereas the cost of double precision calculations versus single precision is negligible. In fact, on some machines, double precision is faster than single. The precision offered by long double usually is unnecessary and often entails considerable extra run-time cost.




Rules for Integer Literals

We can write a literal integer constant using one of three notations: decimal, octal, or hexadecimal. These notations, of course, do not change the bit representation of the value, which is always binary. For example, we can write the value 20 in any of the following three ways:

20     // decimal

024    // octal

0x14   // hexadecimal




Literal integer constants that begin with a leading 0 (zero) are interpreted as octal; those that begin with either 0x or 0X are interpreted as hexadecimal.

By default, the type of a literal integer constant is either int or long. The precise type depends on the value of the literalvalues that fit in an int are type int and larger values are type long. By adding a suffix, we can force the type of a literal integer constant to be type long or unsigned or unsigned long. We specify that a constant is a long by immediately following the value with either L or l (the letter "ell" in either uppercase or lowercase).

Exercises Section 2.1.2

Exercise 2.1:What is the difference between an int, a long, and a short value?

Exercise 2.2:What is the difference between an unsigned and a signed type?

Exercise 2.3:If a short on a given machine has 16 bits then what is the largest number that can be assigned to a short? To an unsigned short?

Exercise 2.4:What value is assigned if we assign 100,000 to a 16-bit unsigned short? What value is assigned if we assign 100,000 to a plain 16-bit short?

Exercise 2.5:What is the difference between a float and a double?

Exercise 2.6:To calculate a mortgage payment, what types would you use for the rate, principal, and payment? Explain why you selected each type.





When specifying a long, use the uppercase L: the lowercase letter l is too easily mistaken for the digit 1.





In a similar manner, we can specify unsigned by following the literal with either U or u. We can obtain an unsigned long literal constant by following the value by both L and U. The suffix must appear with no intervening space:

128u     /* unsigned   */          1024UL    /* unsigned long   */

1L       /* long    */             8Lu        /* unsigned long   */




There are no literals of type short.

Rules for Floating-Point Literals

We can use either common decimal notation or scientific notation to write floating-point literal constants. Using scientific notation, the exponent is indicated either by E or e. By default, floating-point literals are type double. We indicate single precision by following the value with either F or f. Similarly, we specify extended precision by following the value with either L or l (again, use of the lowercase l is discouraged). Each pair of literals below denote the same underlying value:

3.14159F            .001f          12.345L            0.

3.14159E0f          1E-3F          1.2345E1L          0e0




Boolean and Character Literals

The words true and false are literals of type bool:

bool test = false;




Printable character literals are written by enclosing the character within single quotation marks:

'a'         '2'         ','         ' ' // blank




Such literals are of type char. We can obtain a wide-character literal of type wchar_t by immediately preceding the character literal with an L, as in

L'a'




Escape Sequences for Nonprintable Characters

Some characters are nonprintable. A nonprintable character is a character for which there is no visible image, such as backspace or a control character. Other characters have special meaning in the language, such as the single and double quotation marks, and the backslash. Nonprintable characters and special characters are written using an escape sequence. An escape sequence begins with a backslash. The language defines the following escape sequences:

newline\nhorizontal tab\t

vertical tab\vbackspace\b

carriage return\rformfeed\f

alert (bell)\abackslash\\

question mark\?single quote\'

double quote\"




We can write any character as a generalized escape sequence of the form

\ooo




where ooo represents a sequence of as many as three octal digits. The value of the octal digits represents the numerical value of the character. The following examples are representations of literal constants using the ASCII character set:

\7 (bell)      \12 (newline)     \40 (blank)

\0 (null)      \062 ('2')        \115 ('M')




The character represented by '\0' is often called a "null character," and has special significance, as we shall soon see.

We can also write a character using a hexadecimal escape sequence

\xddd




consisting of a backslash, an x, and one or more hexadecimal digits.

Character String Literals

All of the literals we've seen so far have primitive built-in types. There is one additional literalstring literalthat is more complicated. String literals are arrays of constant characters, a type that we'll discuss in more detail in Section 4.3 (p. 130).

String literal constants are written as zero or more characters enclosed in double quotation marks. Nonprintable characters are represented by their underlying escape sequence.

"Hello World!"                 // simple string literal

""                             // empty string literal

"\nCC\toptions\tfile.[cC>\n"   // string literal using newlines and tabs



For compatibility with C, string literals in C++ have one character in addition to those typed in by the programmer. Every string literal ends with a null character added by the compiler. A character literal

'A' // single quote: character literal




represents the single character A, whereas

"A" // double quote: character string literal




represents an array of two characters: the letter A and the null character.

Just as there is a wide character literal, such as

L'a'




there is a wide string literal, again preceded by L, such as

L"a wide string literal"




The type of a wide string literal is an array of constant wide characters. It is also terminated by a wide null character.

Concatenated String Literals

Two string literals (or two wide string literals) that appear adjacent to one another and separated only by spaces, tabs, or newlines are concatenated into a single new string literal. This usage makes it easy to write long literals across separate lines:

// concatenated long string literal

std::cout << "a multi-line "

"string literal "

"using concatenation"

<< std::endl;




When executed this statement would print:

a multi-line string literal using concatenation




What happens if you attempt to concatenate a string literal and a wide string literal? For example:

// Concatenating plain and wide character strings is undefined

std::cout << "multi-line " L"literal " << std::endl;




The result is undefinedthat is, there is no standard behavior defined for concatenating the two different types. The program might appear to work, but it also might crash or produce garbage values. Moreover, the program might behave differently under one compiler than under another.

Advice: Don't Rely on Undefined Behavior

Programs that use undefined behavior are in error. If they work, it is only by coincidence. Undefined behavior results from a program error that the compiler cannot detect or from an error that would be too much trouble to detect.

Unfortunately, programs that contain undefined behavior can appear to execute correctly in some circumstances and/or on one compiler. There is no guarantee that the same program, compiled under a different compiler or even a subsequent release of the current compiler, will continue to run correctly. Nor is there any guarantee that what works with one set of inputs will work with another.

Programs should not (knowingly) rely on undefined behavior. Similarly, programs usually should not rely on machine-dependent behavior, such as assuming that the size of an int is a fixed and known value. Such programs are said to be nonportable. When the program is moved to another machine, any code that relies on machine-dependent behavior may have to be found and corrected. Tracking down these sorts of problems in previously working programs is, mildly put, a profoundly unpleasant task.




Multi-Line Literals

There is a more primitive (and less useful) way to handle long strings that depends on an infrequently used program formatting feature: Putting a backslash as the last character on a line causes that line and the next to be treated as a single line.

As noted on page 14, C++ programs are largely free-format. In particular, there are only a few places that we may not insert whitespace. One of these is in the middle of a word. In particular, we may not break a line in the middle of a word. We can circumvent this rule by using a backslash:

// ok: A \ before a newline ignores the line break

std::cou\

t << "Hi" << st\

d::endl;




is equivalent to

std::cout << "Hi" << std::endl;




We could use this feature to write a long string literal:

// multiline string literal

std::cout << "a multi-line \

string literal \

using a backslash"

<< std::endl;

return 0;

}




Note that the backslash must be the last thing on the lineno comments or trailing blanks are allowed. Also, any leading spaces or tabs on the subsequent lines are part of the literal. For this reason, the continuation lines of the long literal do not have the normal indentation.

Exercises Section 2.2

Exercise 2.7:Explain the difference between the following sets of literal constants:

(a) 'a',L 'a',"a",L"a"

(b) 10, 10u, 10L, 10uL, 012, 0xC

(c) 3.14, 3.14f, 3.14L




Exercise 2.8:Determine the type of each of these literal constants:

(a) -10 (b) -10u (c) -10. (d) -10e-2




Exercise 2.9:Which, if any, of the following are illegal?

(a) "Who goes with F\145rgus?\012"

(b) 3.14e1L          (c) "two" L"some"

(d) 1024f            (e) 3.14UL

(f) "multiple line

comment"




Exercise 2.10:Using escape sequences, write a program to print 2M followed by a newline. Modify the program to print 2, then a tab, then an M, followed by a newline.










2.3. Variables

Imagine that we are given the problem of computing 2 to the power of 10. Our first attempt might be something like

#include <iostream>

int main()

{

// a first, not very good, solution

std::cout << "2 raised to the power of 10: ";

std::cout << 2*2*2*2*2*2*2*2*2*2;

std::cout << std::endl;

return 0;

}




This program solves the problem, although we might double- or triple-check to make sure that exactly 10 literal instances of 2 are being multiplied. Otherwise, we're satisfied. Our program correctly generates the answer 1,024.

We're next asked to compute 2 raised to the power of 17 and then to the power of 23. Changing our program each time is a nuisance. Worse, it proves to be remarkably error-prone. Too often, the modified program produces an answer with one too few or too many instances of 2.

An alternative to the explicit brute force power-of-2 computation is twofold:

Use named objects to perform and print each computation.

Use flow-of-control constructs to provide for the repeated execution of a sequence of program statements while a condition is true.

Here, then, is an alternative way to compute 2 raised to the power of 10:

#include <iostream>

int main()

{

// local objects of type int

int value = 2;

int pow = 10;

int result = 1;

// repeat calculation of result until cnt is equal to pow

for (int cnt = 0; cnt != pow; ++cnt)

result *= value;   // result = result * value;

std::cout << value

<< " raised to the power of "

<< pow << ": \t"

<< result << std::endl;

return 0;

}




value, pow, result, and cnt are variables that allow for the storage, modification, and retrieval of values. The for loop allows for the repeated execution of our calculation until it's been executed pow times.

Exercises Section 2.3

Exercise 2.11:Write a program that prompts the user to input two numbers, the base and exponent. Print the result of raising the base to the power of the exponent.





Key Concept: Strong Static Typing

C++ is a statically typed language, which means that types are checked at compile time. The process by which types are checked is referred to as type-checking.

In most languages, the type of an object constrains the operations that the object can perform. If the type does not support a given operation, then an object of that type cannot perform that operation.

In C++, whether an operation is legal or not is checked at compile time. When we write an expression, the compiler checks that the objects used in the expression are used in ways that are defined by the type of the objects. If not, the compiler generates an error message; an executable file is not produced.

As our programs, and the types we use, get more complicated, we'll see that static type checking helps find bugs in our programs earlier. A consequence of static checking is that the type of every entity used in our programs must be known to the compiler. Hence, we must define the type of a variable before we can use that variable in our programs.




2.3.1. What Is a Variable?

A variable provides us with named storage that our programs can manipulate. Each variable in C++ has a specific type, which determines the size and layout of the variable's memory; the range of values that can be stored within that memory; and the set of operations that can be applied to the variable. C++ programmers tend to refer to variables as "variables" or as "objects" interchangeably.

Lvalues and Rvalues

We'll have more to say about expressions in Chapter 5, but for now it is useful to know that there are two kinds of expressions in C++:

lvalue (pronounced "ell-value"): An expression that is an lvalue may appear as either the left-hand or right-hand side of an assignment.

rvalue (pronounced "are-value"): An expression that is an rvalue may appear on the right- but not left-hand side of an assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric literals are rvalues and so may not be assigned. Given the variables:

int units_sold = 0;

double sales_price = 0, total_revenue = 0;




it is a compile-time error to write either of the following:

// error: arithmetic expression is not an lvalue

units_sold * sales_price = total_revenue;

// error: literal constant is not an lvalue

0 = 1;




Some operators, such as assignment, require that one of their operands be an lvalue. As a result, lvalues can be used in more contexts than can rvalues. The context in which an lvalue appears determines how it is used. For example, in the expression

units_sold = units_sold + 1;




the variable units_sold is used as the operand to two different operators. The + operator cares only about the values of its operands. The value of a variable is the value currently stored in the memory associated with that variable. The effect of the addition is to fetch that value and add one to it.

The variable units_sold is also used as the left-hand side of the = operator. The = operator reads its right-hand side and writes to its left-hand side. In this expression, the result of the addition is stored in the storage associated with units_sold; the previous value in units_sold is overwritten.

In the course of the text, we'll see a number of situations in which the use of an rvalue or lvalue impacts the behavior and/or the performance of our programsin particular when passing and returning values from a function.





Exercises Section 2.3.1

Exercise 2.12:Distinguish between an lvalue and an rvalue; show examples of each.

Exercise 2.13:Name one case where an lvalue is required.





Terminology: What Is an object?

C++ programmers tend to be cavalier in their use of the term object. Most generally, an object is a region of memory that has a type. More specifically, evaluating an expression that is an lvalue yields an object.

Strictly speaking, some might reserve the term object to describe only variables or values of class types. Others might distinguish between named and unnamed objects, always referring to variables when discussing named objects. Still others distinguish between objects and values, using the term object for data that can be changed by the program and using the term value for those that are read-only.

In this book, we'll follow the more colloquial usage that an object is a region of memory that has a type. We will freely use object to refer to most of the data manipulated by our programs regardless of whether those data have built-in or class type, are named or unnamed, or are data that can be read or written.




2.3.2. The Name of a Variable

The name of a variable, its identifier, can be composed of letters, digits, and the underscore character. It must begin with either a letter or an underscore. Upper- and lowercase letters are distinct: Identifiers in C++ are case-sensitive. The following defines four distinct identifiers:

// declares four different int variables

int somename, someName, SomeName, SOMENAME;




There is no language-imposed limit on the permissible length of a name, but out of consideration for others that will read and/or modify our code, it should not be too long.





For example,

gosh_this_is_an_impossibly_long_name_to_type




is a really bad identifier name.

C++ Keywords

C++ reserves a set of words for use within the language as keywords. Keywords may not be used as program identifiers. Table 2.2 on the next page lists the complete set of C++ keywords.

Table 2.2. C++ Keywordsasmdoifreturntry

autodoubleinlineshorttypedef

booldynamic_castintsignedtypeid

breakelselongsizeoftypename

caseenummutablestaticunion

catchexplicitnamespacestatic_castunsigned

charexportnewstructusing

classexternoperatorswitchvirtual

constfalseprivatetemplatevoid

const_castfloatprotectedthisvolatile

continueforpublicthrowwchar_t

defaultfriendregistertruewhile

deletegotoreinterpret_cast




C++ also reserves a number of words that can be used as alternative names for various operators. These alternative names are provided to support character sets that do not support the standard set of C++ operator symbols. These names, listed in Table 2.3, also may not be used as identifiers:

Table 2.3. C++ Operator Alternative Namesandbitandcomplnot_eqor_eqxor_eq

and_eqbitornotorxor




In addition to the keywords, the standard also reserves a set of identifiers for use in the library. Identifiers cannot contain two consecutive underscores, nor can an identifier begin with an underscore followed immediately by an upper-case letter. Certain identifiersthose that are defined outside a functionmay not begin with an underscore.

Conventions for Variable Names

There are a number of generally accepted conventions for naming variables. Following these conventions can improve the readability of a program.

A variable name is normally written in lowercase letters. For example, one writes index, not Index or INDEX.

An identifier is given a mnemonic namethat is, a name that gives some indication of its use in a program, such as on_loan or salary.

An identifier containing multiple words is written either with an underscore between each word or by capitalizing the first letter of each embedded word. For example, one generally writes student_loan or studentLoan, not studentloan.

The most important aspect of a naming convention is that it be applied consistently.





Exercises Section 2.3.2

Exercise 2.14:Which, if any, of the following names are invalid? Correct each identified invalid name.

(a) int double = 3.14159;        (b) char _;

(c) bool catch-22;               (d) char 1_or_2 ='1';

(e) float Float = 3.14f;








2.3.3. Defining Objects

The following statements define five variables:

int units_sold;

double sales_price, avg_price;

std::string title;

Sales_item curr_book;




Each definition starts with a type specifier, followed by a comma-separated list of one or more names. A semicolon terminates the definition. The type specifier names the type associated with the object: int, double, std::string, and Sales_item are all names of types. The types int and double are built-in types, std::string is a type defined by the library, and Sales_item is a type that we used in Section 1.5 (p. 20)and will define in subsequent chapters. The type determines the amount of storage that is allocated for the variable and the set of operations that can be performed on it.

Multiple variables may be defined in a single statement:

double salary, wage;    // defines two variables of type double

int month,

day, year;          // defines three variables of type int

std::string address;    // defines one variable of type std::string




Initialization

A definition specifies a variable's type and identifier. A definition may also provide an initial value for the object. An object defined with a specified first value is spoken of as initialized. C++ supports two forms of variable initialization: copy-initialization and direct-initialization. The copy-initialization syntax uses the equal (=) symbol; direct-initialization places the initializer in parentheses:

int ival(1024);     // direct-initialization

int ival = 1024;    // copy-initialization




In both cases, ival is initialized to 1024.

Although, at this point in the book, it may seem obscure to the reader, in C++ it is essential to understand that initialization is not assignment. Initialization happens when a variable is created and gives that variable its initial value. Assignment involves obliterating an object's current value and replacing that value with a new one.





Many new C++ programmers are confused by the use of the = symbol to initialize a variable. It is tempting to think of initialization as a form of assignment. But initialization and assignment are different operations in C++. This concept is particularly confusing because in many other languages the distinction is irrelevant and can be ignored. Moreover, even in C++ the distinction rarely matters until one attempts to write fairly complex classes. Nonetheless, it is a crucial concept and one that we will reiterate throughout the text.

There are subtle differences between copy- and direct-initialization when initializing objects of a class type. We won't completely explain these differences until Chapter 13. For now, it's worth knowing that the direct syntax is more flexible and can be slightly more efficient.





Using Multiple Initializers

When we initialize an object of a built-in type, there is only one way to do so: We supply a value, and that value is copied into the newly defined object. For built-in types, there is little difference between the direct and the copy forms of initialization.

For objects of a class type, there are initializations that can be done only using direct-initialization. To understand why, we need to know a bit about how classes control initialization.

Each class may define one or more special member functions (Section 1.5.2, p. 24) that say how we can initialize variables of the class type. The member functions that define how initialization works are known as constructors. Like any function, a constructor can take multiple arguments. A class may define several constructors, each of which must take a different number or type of arguments.

As an example, we'll look a bit at the string class, which we'll cover in more detail in Chapter 3. The string type is defined by the library and holds character strings of varying sizes. To use strings, we must include the string header. Like the IO types, string is defined in the std namespace.

The string class defines several constructors, giving us various ways to initialize a string. One way we can initialize a string is as a copy of a character string literal:

#include <string>

// alternative ways to initialize string from a character string literal

std::string titleA = "C++ Primer, 4th Ed.";

std::string titleB("C++ Primer, 4th Ed.");




In this case, either initialization form can be used. Both definitions create a string object whose initial value is a copy of the specified string literal.

However, we can also initialize a string from a count and a character. Doing so creates a string containing the specified character repeated as many times as indicated by the count:

std::string all_nines(10, '9');   // all_nines= "9999999999"




In this case, the only way to initialize all_nines is by using the direct form of initialization. It is not possible to use copy-initialization with multiple initializers.

Initializing Multiple Variables

When a definition defines two or more variables, each variable may have its own initializer. The name of an object becomes visible immediately, and so it is possible to initialize a subsequent variable to the value of one defined earlier in the same definition. Initialized and uninitialized variables may be defined in the same definition. Both forms of initialization syntax may be intermixed:

#include <string>

// ok: salary defined and initialized before it is used to initialize wage

double salary = 9999.99,

wage(salary + 0.01);

// ok: mix of initialized and uninitialized

int interval,

month = 8, day = 7, year = 1955;

// ok: both forms of initialization syntax used

std::string title("C++ Primer, 4th Ed."),

publisher = "A-W";




An object can be initialized with an arbitrarily complex expression, including the return value of a function:

double price = 109.99, discount = 0.16;

double sale_price = apply_discount(price, discount);




In this example, apply_discount is a function that takes two values of type double and returns a value of type double. We pass the variables price and discount to that function and use its return value to initialize sale_price.

2.3.4. Variable Initialization Rules

When we define a variable without an initializer, the system sometimes initializes the variable for us. What value, if any, is supplied depends on the type of the variable and may depend on where it is defined.

Initialization of Variables of Built-in Type

Whether a variable of built-in type is automatically initialized depends on where it is defined. Variables defined outside any function body are initialized to zero. Variables of built-in type defined inside the body of a function are uninitialized. Using an uninitialized variable for anything other than as the left-hand operand of an assignment is undefined. Bugs due to uninitialized variables can be hard to find. As we cautioned on page 42, you should never rely on undefined behavior.

Exercises Section 2.3.3

Exercise 2.15:What, if any, are the differences between the following definitions:

int month = 9, day = 7;


int month = 09, day = 07;




If either definition contains an error, how might you correct the problem?

Exercise 2.16:Assuming calc is a function that returns a double, which, if any, of the following are illegal definitions? Correct any that are identified as illegal.

(a) int car = 1024, auto = 2048;

(b) int ival = ival;

(c) std::cin >> int input_value;

(d) double salary = wage = 9999.99;

(e) double calc = calc();








We recommend that every object of built-in type be initialized. It is not always necessary to initialize such variables, but it is easier and safer to do so until you can be certain it is safe to omit an initializer.





Caution: Uninitialized Variables Cause Run-Time Problems

Using an uninitialized object is a common program error, and one that is often difficult to uncover. The compiler is not required to detect a use of an uninitialized variable, although many will warn about at least some uses of uninitialized variables. However, no compiler can detect all uses of uninitialized variables.

Sometimes, we're lucky and using an uninitialized variable results in an immediate crash at run time. Once we track down the location of the crash, it is usually pretty easy to see that the variable was not properly initialized.

Other times, the program completes but produces erroneous results. Even worse, the results can appear correct when we run our program on one machine but fail on another. Adding code to the program in an unrelated location can cause what we thought was a correct program to suddenly start to produce incorrect results.

The problem is that uninitialized variables actually do have a value. The compiler puts the variable somewhere in memory and treats whatever bit pattern was in that memory as the variable's initial state. When interpreted as an integral value, any bit pattern is a legitimate valuealthough the value is unlikely to be one that the programmer intended. Because the value is legal, using it is unlikely to lead to a crash. What it is likely to do is lead to incorrect execution and/or incorrect calculation.




Initialization of Variables of Class Type

Each class defines how objects of its type can be initialized. Classes control object initialization by defining one or more constructors (Section 2.3.3, p. 49). As an example, we know that the string class provides at least two constructors. One of these constructors lets us initialize a string from a character string literal and another lets us initialize a string from a character and a count.

Each class may also define what happens if a variable of the type is defined but an initializer is not provided. A class does so by defining a special constructor, known as the default constructor. This constructor is called the default constructor because it is run "by default;" if there is no initializer, then this constructor is used. The default constructor is used regardless of where a variable is defined.

Most classes provide a default constructor. If the class has a default constructor, then we can define variables of that class without explicitly initializing them. For example, the string type defines its default constructor to initialize the string as an empty stringthat is, a string with no characters:

std::string empty;  // empty is the empty string; empty =""




Some class types do not have a default constructor. For these types, every definition must provide explicit initializer(s). It is not possible to define variables of such types without giving an initial value.

Exercises Section 2.3.4

Exercise 2.17:What are the initial values, if any, of each of the following variables?

std::string global_str;

int global_int;

int main()

{

int local_int;

std::string local_str;

// ...

return 0;

}








2.3.5. Declarations and Definitions

As we'll see in Section 2.9 (p. 67), C++ programs typically are composed of many files. In order for multiple files to access the same variable, C++ distinguishes between declarations and definitions.

A definition of a variable allocates storage for the variable and may also specify an initial value for the variable. There must be one and only one definition of a variable in a program.

A declaration makes known the type and name of the variable to the program. A definition is also a declaration: When we define a variable, we declare its name and type. We can declare a name without defining it by using the extern keyword. A declaration that is not also a definition consists of the object's name and its type preceded by the keyword extern:

extern int i;   // declares but does not define i

int i;          //  declares and defines i




An extern declaration is not a definition and does not allocate storage. In effect, it claims that a definition of the variable exists elsewhere in the program. A variable can be declared multiple times in a program, but it must be defined only once.

A declaration may have an initializer only if it is also a definition because only a definition allocates storage. The initializer must have storage to initialize. If an initializer is present, the declaration is treated as a definition even if the declaration is labeled extern:

extern double pi = 3.1416; // definition




Despite the use of extern, this statement defines pi. Storage is allocated and initialized. An extern declaration may include an initializer only if it appears outside a function.

Because an extern that is initialized is treated as a definition, any subseqent definition of that variable is an error:

extern double pi = 3.1416; // definition

double pi;                 // error: redefinition of pi




Similarly, a subsequent extern declaration that has an initializer is also an error:

extern double pi = 3.1416; // definition

extern double pi;          // ok: declaration not definition

extern double pi = 3.1416; // error: redefinition of pi




The distinction between a declaration and a definition may seem pedantic but in fact is quite important.

In C++ a variable must be defined exactly once and must be defined or declared before it is used.





Any variable that is used in more than one file requires declarations that are separate from the variable's definition. In such cases, one file will contain the definition for the variable. Other files that use that same variable will contain declarations forbut not a definition ofthat same variable.

Exercises Section 2.3.5

Exercise 2.18:Explain the meaning of each of these instances of name:

extern std::string name;

std::string name("exercise 3.5a");

extern std::string name("exercise 3.5a");








2.3.6. Scope of a Name

Every name in a C++ program must refer to a unique entity (such as a variable, function, type, etc.). Despite this requirement, names can be used more than once in a program: A name can be reused as long as it is used in different contexts, from which the different meanings of the name can be distinguished. The context used to distinguish the meanings of names is a scope. A scope is a region of the program. A name can refer to different entities in different scopes.

Most scopes in C++ are delimited by curly braces. Generally, names are visible from their point of declaration until the end the scope in which the declaration appears. As an example, consider this program, which we first encountered in Section 1.4.2 (p. 14):

#include <iostream>

int main()

{

int sum = 0;

//  sum values from 1 up to 10 inclusive

for (int val = 1; val <= 10; ++val)

sum += val;   // equivalent to sum = sum + val


std::cout << "Sum of 1 to 10 inclusive is "

<< sum << std::endl;

return 0;

}




This program defines three names and uses two names from the standard library. It defines a function named main and two variables named sum and val. The name main is defined outside any curly braces and is visible throughout the program. Names defined outside any function have global scope; they are accessible from anywhere in the program. The name sum is defined within the scope of the main function. It is accessible throughout the main function but not outside of it. The variable sum has local scope. The name val is more interesting. It is defined in the scope of the for statement (Section 1.4.2, p. 14). It can be used in that statement but not elsewhere in main. It has statement scope.

Scopes in C++ Nest

Names defined in the global scope can be used in a local scope; global names and those defined local to a function can be used inside a statement scope, and so on. Names can also be redefined in an inner scope. Understanding what entity a name refers to requires unwinding the scopes in which the names are defined:

#include <iostream>

#include <string>

/*  Program for illustration purposes only:

*  It is bad style for a function to use a global variable and then

*  define a local variable with the same name

*/

std::string s1 = "hello";  // s1 has global scope

int main()

{

std::string s2 = "world"; // s2 has local scope

// uses global s1; prints "hello world"

std::cout << s1 << " " << s2 << std::endl;

int s1 = 42; // s1 is local and hides global s1

// uses local s1;prints "42 world"

std::cout << s1 << " " << s2 << std::endl;

return 0;

}




This program defines three variables: a global string named s1, a local string named s2, and a local int named s1. The definition of the local s1 hides the global s1.

Variables are visible from their point of declaration. Thus, the local definition of s1 is not visible when the first output is performed. The name s1 in that output expression refers to the global s1. The output printed is hello world. The second statement that does output follows the local definition of s1. The local s1 is now in scope. The second output uses the local rather than the global s1. It writes 42 world.

Programs such as the preceeding are likely to be confusing. It is almost always a bad idea to define a local variable with the same name as a global variable that the function uses or might use. It is much better to use a distinct name for the local.





We'll have more to say about local and global scope in Chapter 7 and about statement scope in Chapter 6. C++ has two other levels of scope: class scope, which we'll cover in Chapter 12 and namespace scope, which we'll see in Section 17.2.

2.3.7. Define Variables Where They Are Used

In general, variable definitions or declarations can be placed anywhere within the program that a statement is allowed. A variable must be declared or defined before it is used.

It is usually a good idea to define an object near the point at which the object is first used.





Defining an object where the object is first used improves readability. The reader does not have to go back to the beginning of a section of code to find the definition of a particular variable. Moreover, it is often easier to give the variable a useful initial value when the variable is defined close to where it is first used.

One constraint on placing declarations is that variables are accessible from the point of their definition until the end of the enclosing block. A variable must be defined in or before the outermost scope in which the variable will be used.

Exercises Section 2.3.6

Exercise 2.19:What is the value of j in the following program?

int i = 42;

int main()

{

int i = 100;

int j = i;

// ...

}




Exercise 2.20:Given the following program fragment, what values are printed?

int i = 100, sum = 0;

for (int i = 0; i != 10; ++i)

sum += i;

std::cout << i << " " << sum << std::endl;




Exercise 2.21:Is the following program legal?

int sum = 0;

for (int i = 0; i != 10; ++i)

sum += i;

std::cout << "Sum from 0 to " << i

<< " is " << sum << std::endl;













2.4. const Qualifier

There are two problems with the following for loop, both concerning the use of 512 as an upper bound.

for (int index = 0; index != 512; ++index) {

// ...

}




The first problem is readability. What does it mean to compare index with 512? What is the loop doingthat is, what makes 512 matter? (In this example, 512 is known as a magic number, one whose significance is not evident within the context of its use. It is as if the number had been plucked by magic from thin air.)

The second problem is maintainability. Imagine that we have a large program in which the number 512 occurs 100 times. Let's further assume that 80 of these references use 512 to indicate the size of a particular buffer but the other 20 use 512 for different purposes. Now we discover that we need to increase the buffer size to 1024. To make this change, we must examine every one of the places that the number 512 appears. We must determinecorrectly in every casewhich of those uses of 512 refer to the buffer size and which do not. Getting even one instance wrong breaks the program and requires us to go back and reexamine each use.

The solution to both problems is to use an object initialized to 512:

int bufSize = 512;    // input buffer size

for (int index = 0; index != bufSize; ++index) {

// ...

}




By choosing a mnemonic name, such as bufSize, we make the program more readable. The test is now against the object rather than the literal constant:

index != bufSize




If we need to change this size, the 80 occurrences no longer need to be found and corrected. Rather, only the one line that initializes bufSize requires change. Not only does this approach require significantly less work, but also the likelihood of making a mistake is greatly reduced.

Defining a const Object

There is still a serious problem with defining a variable to represent a constant value. The problem is that bufSize is modifiable. It is possible for bufSize to be changedaccidentally or otherwise. The const type qualifier provides a solution: It transforms an object into a constant.

const int bufSize = 512;     // input buffer size




defines bufSize to be a constant initialized with the value 512. The variable bufSize is still an lvalue (Section 2.3.1, p. 45), but now the lvalue is unmodifiable. Any attempt to write to bufSize results in a compile-time error.

bufSize = 0; // error: attempt to write to const object




Because we cannot subsequently change the value of an object declared to be const, we must initialize it when it is defined:



const std::string hi = "hello!"; // ok: initialized

const int i, j = 0;  // error: i is uninitialized const






const Objects Are Local to a File By Default

When we define a nonconst variable at global scope (Section 2.3.6, p. 54), it is accessible throughout the program. We can define a nonconst variable in one file andassuming an appropriate declaration has been madecan use that variable in another file:

// file_1.cc

int counter;  // definition

// file_2.cc

extern int counter; // uses counter from file_1

++counter;          // increments counter defined in file_1




Unlike other variables, unless otherwise specified, const variables declared at global scope are local to the file in which the object is defined. The variable exists in that file only and cannot be accessed by other files.

We can make a const object accessible throughout the program by specifying that it is extern:

// file_1.cc

// defines and initializes a const that is accessible to other files

extern const int bufSize = fcn();

// file_2.cc

extern const int bufSize; // uses bufSize from file_1

// uses bufSize defined in file_1

for (int index = 0; index != bufSize; ++index)

// ...




In this program, file_1.cc defines and initializes bufSize to the result returned from calling the function named fcn. The definition of bufSize is extern, meaning that bufSize can be used in other files. The declaration in file_2.cc is also made extern. In this case, the extern signifies that bufSize is a declaration and hence no initializer is provided.

We'll see in Section 2.9.1 (p. 69) why const objects are made local to a file.

Nonconst variables are extern by default. To make a const variable accessible to other files we must explicitly specify that it is extern.





Exercises Section 2.4

Exercise 2.22:The following program fragment, while legal, is an example of poor style. What problem(s) does it contain? How would you improve it?

for (int i = 0; i < 100; ++i)

// process i




Exercise 2.23:Which of the following are legal? For those usages that are illegal, explain why.

(a) const int buf;

(b) int cnt = 0;

const int sz = cnt;

(c) cnt++; sz++;













2.5. References

A reference serves as an alternative name for an object. In real-world programs, references are primarily used as formal parameters to functions. We'll have more to say about reference parameters in Section 7.2.2 (p. 232). In this section we introduce and illustrate the use of references as independent objects.

A reference is a compound type that is defined by preceding a variable name by the & symbol. A compound type is a type that is defined in terms of another type. In the case of references, each reference type "refers to" some other type. We cannot define a reference to a reference type, but can make a reference to any other data type.

A reference must be initialized using an object of the same type as the reference:

int ival = 1024;

int &refVal = ival; // ok: refVal refers to ival

int &refVal2;       // error: a reference must be initialized

int &refVal3 = 10;  // error: initializer must be an object




A Reference Is an Alias

Because a reference is just another name for the object to which it is bound, all operations on a reference are actually operations on the underlying object to which the reference is bound:

refVal += 2;




adds 2 to ival, the object referred to by refVal. Similarly,

int ii = refVal;




assigns to ii the value currently associated with ival.

When a reference is initialized, it remains bound to that object as long as the reference exists. There is no way to rebind a reference to a different object.





The important concept to understand is that a reference is just another name for an object. Effectively, we can access ival either through its actual name or through its alias, refVal. Assignment is just another operation, so that when we write

refVal = 5;




the effect is to change the value of ival to 5. A consequence of this rule is that you must initialize a reference when you define it; initialization is the only way to say to which object a reference refers.

Defining Multiple References

We can define multiple references in a single type definition. Each identifier that is a reference must be preceded by the & symbol:

int i = 1024, i2 = 2048;

int &r = i, r2 = i2;      // r is a reference, r2 is an int

int i3 = 1024, &ri = i3;  // defines one object, and one reference

int &r3 = i3, &r4 = i2;   // defines two references




const References

A const reference is a reference that may refer to a const object:

const int ival = 1024;

const int &refVal = ival;      // ok: both reference and object are const

int &ref2 = ival;              // error: non const reference to a const object




We can read from but not write to refVal. Thus, any assignment to refVal is illegal. This restriction should make sense: We cannot assign directly to ival and so it should not be possible to use refVal to change ival.

For the same reason, the initialization of ref2 by ival is an error: ref2 is a plain, nonconst reference and so could be used to change the value of the object to which ref2 refers. Assigning to ival through ref2 would result in changing the value of a const object. To prevent such changes, it is illegal to bind a plain reference to a const object.

Terminology: const Reference is a Reference to const

C++ programmers tend to be cavalier in their use of the term const reference. Strictly speaking, what is meant by "const reference" is "reference to const." Similarly, programmers use the term "nonconst reference" when speaking of reference to a nonconst type. This usage is so common that we will follow it in this book as well.




A const reference can be initialized to an object of a different type or to an rvalue (Section 2.3.1, p. 45), such as a literal constant:

int i = 42;

//  legal for const references only

const int &r = 42;

const int &r2 = r + i;




The same initializations are not legal for nonconst references. Rather, they result in compile-time errors. The reason is subtle and warrants an explanation.

This behavior is easiest to understand when we look at what happens when we bind a reference to an object of a different type. If we write

double dval = 3.14;

const int &ri = dval;




the compiler transforms this code into something like this:

int temp = dval;          // create temporary int from the double

const int &ri = temp;   // bind ri to that temporary




If ri were not const, then we could assign a new value to ri. Doing so would not change dval but would instead change temp. To the programmer expecting that assignments to ri would change dval, it would appear that the change did not work. Allowing only const references to be bound to values requiring temporaries avoids the problem entirely because a const reference is read-only.

A nonconst reference may be attached only to an object of the same type as the reference itself.



A const reference may be bound to an object of a different but related type or to an rvalue.



Exercises Section 2.5

Exercise 2.24:Which of the following definitions, if any, are invalid? Why? How would you correct them?

(a) int ival = 1.01;     (b) int &rval1 = 1.01;

(c) int &rval2 = ival;   (d) const int &rval3 = 1;




Exercise 2.25:Given the preceeding definitions, which, if any, of the following assignments are invalid? If they are valid, explain what they do.

(a) rval2 = 3.14159;  (b) rval2 = rval3;

(c) ival = rval3;     (d) rval3 = ival;




Exercise 2.26:What are the differences among the definitions in (a) and the assignments in (b)? Which, if any, are illegal?

(a) int ival = 0;          (b) ival = ri;

const int &ri = 0;         ri = ival;




Exercise 2.27:What does the following code print?

int i, &ri = i;

i = 5; ri =10;

std::cout << i << " " << ri << std::endl;













2.6. Typedef Names

A typedef lets us define a synonym for a type:

typedef double wages;       //  wages is a synonym for double

typedef int exam_score;     //  exam_score is a synonym for int

typedef wages salary;       //  indirect synonym for double




A typedef name can be used as a type specifier:

wages hourly, weekly;     // double hourly, weekly;

exam_score test_result;   // int test_result;




A typedef definition begins with the keyword typedef, followed by the data type and identifier. The identifier, or typedef name, does not introduce a new type but rather a synonym for the existing data type. A typedef name can appear anywhere in a program that a type name can appear.

Typedefs are commonly used for one of three purposes:

To hide the implementation of a given type and emphasize instead the purpose for which the type is used

To streamline complex type definitions, making them easier to understand

To allow a single type to be used for more than one purpose while making the purpose clear each time the type is used







2.7. Enumerations

Often we need to define a set of alternative values for some attribute. A file, for example, might be open in one of three states: input, output, and append. One way to keep track of these state values might be to associate a unique constant number with each. We might write the following:

const int input = 0;

const int output = 1;

const int append = 2;




Although this approach works, it has a significant weakness: There is no indication that these values are related in any way. Enumerations provide an alternative method of not only defining but also grouping sets of integral constants.

Defining and Initializing Enumerations

An enumeration is defined using the enum keyword, followed by an optional enumeration name, and a comma-separated list of enumerators enclosed in braces.

// input is 0, output is 1, and append is 2

enum open_modes {input, output, append};




By default, the first enumerator is assigned the value zero. Each subsequent enumerator is assigned a value one greater than the value of the enumerator that immediately precedes it.

Enumerators Are const Values

We may supply an initial value for one or more enumerators. The value used to initialize an enumerator must be a constant expression. A constant expression is an expression of integral type that the compiler can evaluate at compile time. An integral literal constant is a constant expression, as is a const object (Section 2.4, p. 56) that is itself initialized from a constant expression.

For example, we might define the following enumeration:

// shape is 1, sphere is 2, cylinder is 3, polygon is 4

enum Forms {shape = 1, sphere, cylinder, polygon};




In the enum Forms we explicitly assigned shape the value 1. The other enumerators are implicitly initialized: sphere is initialized to 2, cylinder to 3, and polygon to 4.

An enumerator value need not be unique.

// point2d is 2, point2w is 3, point3d is 3, point3w is 4

enum Points { point2d = 2, point2w,

point3d = 3, point3w };




In this example, the enumerator point2d is explicitly initialized to 2. The next enumerator, point2w, is initialized by default, meaning that its value is one more than the value of the previous enumerator. Thus, point2w is initialized to 3. The enumerator point3d is explicitly initialized to 3, and point3w, again is initialized by default, in this case to 4.

It is not possible to change the value of an enumerator. As a consequence an enumerator is itself a constant expression and so can be used where a constant expression is required.

Each enum Defines a Unique Type

Each enum defines a new type. As with any type, we can define and initialize objects of type Points and can use those objects in various ways. An object of enumeration type may be initialized or assigned only by one of its enumerators or by another object of the same enumeration type:

Points pt3d = point3d; //  ok: point3d is a Points enumerator

Points pt2w = 3;       //  error: pt2w initialized with int

pt2w = polygon;        //  error: polygon is not a Points enumerator

pt2w = pt3d;           //  ok: both are objects of Points enum type




Note that it is illegal to assign the value 3 to a Points object even though 3 is a value associated with one of the Points enumerators.






2.8. Class Types

In C++ we define our own data types by defining a class. A class defines the data that an object of its type contains and the operations that can be executed by objects of that type. The library types string, istream, and ostream are all defined as classes.

C++ support for classes is extensivein fact, defining classes is so important that we shall devote Parts III through V to describing C++ support for classes and operations using class types.

In Chapter 1 we used the Sales_item type to solve our bookstore problem. We used objects of type Sales_item to keep track of sales data associated with a particular ISBN. In this section, we'll take a first look at how a simple class, such as Sales_item, might be defined.

Class Design Starts with the Operations

Each class defines an interface and implementation. The interface consists of the operations that we expect code that uses the class to execute. The implementation typically includes the data needed by the class. The implementation also includes any functions needed to define the class but that are not intended for general use.

When we define a class, we usually begin by defining its interfacethe operations that the class will provide. From those operations we can then determine what data the class will require to accomplish its tasks and whether it will need to define any functions to support the implementation.

The operations our type will support are the operations we used in Chapter 1. These operations were outlined in Section 1.5.1 (p. 21):

The addition operator to add two Sales_items

The input and output operators to read and write Sales_item objects

The assignment operator to assign one Sales_item object to another

The same_isbn function to determine if two objects refer to the same book

We'll see how to define these operations in Chapters 7 and 14 after we learn how to define functions and operators. Even though we can't yet implement these functions, we can figure out what data they'll need by thinking a bit about what these operations must do. Our Sales_item class must

Keep track of how many copies of a particular book were sold

Report the total revenue for that book

Calculate the average sales price for that book

Looking at this list of tasks, we can see that we'll need an unsigned to keep track of how many books are sold and a double to keep track of the total revenue. From these data we can calculate the average sales price as total revenue divided by number sold. Because we also want to know which book we're reporting on, we'll also need a string to keep track of the ISBN.

Defining the Sales_item Class

Evidently what we need is the ability to define a data type that will have these three data elements and the operations we used in Chapter 1. In C++, the way we define such a data type is to define a class:

class Sales_item {

public:

// operations on Sales_item objects will go here

private:

std::string isbn;

unsigned units_sold;

double revenue;

};




A class definition starts with the keyword class followed by an identifier that names the class. The body of the class appears inside curly braces. The close curly must be followed by a semicolon.

It is a common mistake among new programmers to forget the semicolon at the end of a class definition.





The class body, which can be empty, defines the data and operations that make up the type. The operations and data that are part of a class are referred to as its members. The operations are referred to as the member functions (Section 1.5.2, p. 24) and the data as data members.

The class also may contain zero or more public or private access labels. An access label controls whether a member is accessible outside the class. Code that uses the class may access only the public members.

When we define a class, we define a new type. The class name is the name of that type. By naming our class Sales_item we are saying that Sales_item is a new type and that programs may define variables of this type.

Each class defines its own scope (Section 2.3.6, p. 54). That is, the names given to the data and operations inside the class body must be unique within the class but can reuse names defined outside the class.

Class Data Members

The data members of a class are defined in somewhat the same way that normal variables are defined. We specify a type and give the member a name just as we do when defining a simple variable:

std::string isbn;

unsigned units_sold;

double revenue;




Our class has three data members: a member of type string named isbn, an unsigned member named units_sold, and a member of type double named revenue. The data members of a class define the contents of the objects of that class type. When we define objects of type Sales_item, those objects will contain a string, an unsigned, and a double.

There is one crucially important difference between how we define variables and class data members: We ordinarily cannot initialize the members of a class as part of their definition. When we define the data members, we can only name them and say what types they have. Rather than initializing data members when they are defined inside the class definition, classes control initialization through special member functions called constructors (Section 2.3.3, p. 49). We will define the Sales_item constructors in Section 7.7.3 (p. 262).

Access Labels

Access labels control whether code that uses the class may use a given member. Member functions of the class may use any member of their own class, regardless of the access level. The access labels, public and private, may appear multiple times in a class definition. A given label applies until the next access label is seen.

The public section of a class defines members that can be accessed by any part of the program. Ordinarily we put the operations in the public section so that any code in the program may execute these operations.

Code that is not part of the class does not have access to the private members. By making the Sales_item data members private, we ensure that code that operates on Sales_item objects cannot directly manipulate the data members. Programs, such as the one we wrote in Chapter 1, may not access the private members of the class. Objects of type Sales_item may execute the operations but not change the data directly.

Using the struct Keyword

C++ supports a second keyword, struct, that can be used to define class types. The struct keyword is inherited from C.

If we define a class using the class keyword, then any members defined before the first access label are implicitly private; ifwe usethe struct keyword, then those members are public. Whether we define a class using the class keyword or the struct keyword affects only the default initial access level.

We could have defined our Sales_item equivalently by writing

struct Sales_item {

// no need for public label, members are public by default

// operations on Sales_item objects

private:

std::string isbn;

unsigned units_sold;

double revenue;

};




There are only two differences between this class definition and our initial class definition: Here we use the struct keyword, and we eliminate the use of public keyword immediately following the opening curly brace. Members of a struct are public, unless otherwise specified, so there is no need for the public label.

The only difference between a class defined with the class keyword or the struct keyword is the default access level: By default, members in a struct are public; those in a class are private.





Exercises Section 2.8

Exercise 2.28:Compile the following program to determine whether your compiler warns about a missing semicolon after a class definition:

class Foo  {

// empty

} // Note: no semicolon

int main()

{

return 0;

}




If the diagnostic is confusing, remember the message for future reference.

Exercise 2.29:Distinguish between the public and private sections of a class.

Exercise 2.30:Define the data members of classes to represent the following types:

(a) a phone number            (b) an address

(c) an employee or a company  (d) a student at a university













2.9. Writing Our Own Header Files

We know from Section 1.5(p. 20)that ordinarily class definitions go into a header file. In this section we'll see how to define a header file for the Sales_item class.

In fact, C++ programs use headers to contain more than class definitions. Recall that every name must be declared or defined before it is used. The programs we've written so far handle this requirement by putting all their code into a single file. As long as each entity precedes the code that uses it, this strategy works. However, few programs are so simple that they can be written in a single file. Programs made up of multiple files need a way to link the use of a name and its declaration. In C++ that is done through header files.

To allow programs to be broken up into logical parts, C++ supports what is commonly known as separate compilation. Separate compilation lets us compose a program from several files. To support separate compilation, we'll put the definition of Sales_item in a header file. The member functions for Sales_item, which we'll define in Section 7.7 (p. 258), will go in a separate source file. Functions such as main that use Sales_item objects are in other source files. Each of the source files that use Sales_item must include our Sales_item.h header file.

2.9.1. Designing Our Own Headers

A header provides a centralized location for related declarations. Headers normally contain class definitions, extern variable declarations, and function declarations, about which we'll learn in Section 7.4 (p. 251). Files that use or define these entities include the appropriate header(s).

Proper use of header files can provide two benefits: All files are guaranteed to use the same declaration for a given entity; and should a declaration require change, only the header needs to be updated.

Some care should be taken in designing headers. The declarations in a header should logically belong together. A header takes time to compile. If it is too large programmers may be reluctant to incur the compile-time cost of including it.

To reduce the compile time needed to process headers, some C++ implementations support precompiled header files. For more details, consult the reference manual of your C++ implementation.





Headers Are for Declarations, Not Definitions

When designing a header it is essential to remember the difference between definitions, which may only occur once, and declarations, which may occur multiple times (Section 2.3.5, p. 52). The following statements are definitions and therefore should not appear in a header:

extern int ival = 10;      // initializer, so it's a definition

double fica_rate;          // no extern, so it's a definition




Although ival is declared extern, it has an initializer, which means this statement is a definition. Similarly, the declaration of fica_rate, although it does not have an initializer, is a definition because the extern keyword is absent. Including either of these definitions in two or more files of the same program will result in a linker error complaining about multiple definitions.

Compiling and Linking Multiple Source Files

To produce an executable file, we must tell the compiler not only where to find our main function but also where to find the definition of the member functions defined by the Sales_item class. Let's assume that we have two files: main.cc, which contains the definition of main, and Sales_item.cc, which contains the Sales_item member functions. We might compile these files as follows:

$ CC -c main.cc Sales_item.cc # by default generates a.exe

# some compilers generate a.out


# puts the executable in main.exe

$ CC -c main.cc Sales_item.cc -o main




where $ is our system prompt and # begins a command-line comment. We can now run the executable file, which will run our main program.

If we have only changed one of our .cc source files, it is more efficient to recompile only the file that actually changed. Most compilers provide a way to separately compile each file. This process usually yields a .o file, where the .o extension implies that the file contains object code.

The compiler lets us link object files together to form an executable. On the system we use, in which the compiler is invoked by a command named CC, we would compile our program as follows:

$ CC -c main.cc              # generates main.o

$ CC -c Sales_item.cc        # generates Sales_item.o

$ CC main.o Sales_item.o     # by default generates a.exe;

# some compilers generate a.out


# puts the executable in main.exe

$ CC main.o Sales_item.o -o main




You'll need to check with your compiler's user's guide to understand how to compile and execute programs made up of multiple source files.

Many compilers offer an option to enhance the error detection of the compiler. Check your compiler's user's guide to see what additional checks are available.







Because headers are included in multiple source files, they should not contain definitions of variables or functions.





There are three exceptions to the rule that headers should not contain definitions: classes, const objects whose value is known at compile time, and inline functions (Section 7.6 (p. 256) covers inline functions) are all defined in headers. These entities may be defined in more than one source file as long as the definitions in each file are exactly the same.

These entities are defined in headers because the compiler needs their definitions (not just declarations) to generate code. For example, to generate code that defines or uses objects of a class type, the compiler needs to know what data members make up that type. It also needs to know what operations can be performed on these objects. The class definition provides the needed information. That const objects are defined in a header may require a bit more explanation.

Some const Objects Are Defined in Headers

Recall that by default a const variable (Section 2.4, p. 57) is local to the file in which it is defined. As we shall now see, the reason for this default is to allow const variables to be defined in header files.

In C++ there are places where constant expression (Section 2.7, p. 62) is required. For example, the initializer of an enumerator must be a constant expression. We'll see other cases that require constant expressions in later chapters.

Generally speaking, a constant expression is an expression that the compiler can evaluate at compile-time. A const variable of integral type may be a constant expression when it is itself initialized from a constant expression. However, for the const to be a constant expression, the initializer must be visible to the compiler. To allow multiple files to use the same constant value, the const and its initializer must be visible in each file. To make the initializer visible, we normally define such consts inside a header file. That way the compiler can see the initializer whenever the const is used.

However, there can be only one definition (Section 2.3.5, p. 52) for any variable in a C++ program. A definition allocates storage; all uses of the variable must refer to the same storage. Because, by default, const objects are local to the file in which they are defined, it is legal to put their definition in a header file.

There is one important implication of this behavior. When we define a const in a header file, every source file that includes that header has its own const variable with the same name and value.

When the const is initialized by a constant expression, then we are guaranteed that all the variables will have the same value. Moreover, in practice, most compilers will replace any use of such const variables by their corresponding constant expression at compile time. So, in practice, there won't be any storage used to hold const variables that are initialized by constant expressions.

When a const is initialized by a value that is not a constant expression, then it should not be defined in header file. Instead, as with any other variable, the const should be defined and initialized in a source file. An extern declaration for that const should be made in the header, enabling multiple files to share that variable.

2.9.2. A Brief Introduction to the Preprocessor

Now that we know what we want to put in our headers, our next problem is to actually write a header. We know that to use a header we have to #include it in our source file. In order to write our own headers, we need to understand a bit more about how a #include directive works. The #include facility is a part of the C++ preprocessor. The preprocessor manipulates the source text of our programs and runs before the compiler. C++ inherits a fairly elaborate preprocessor from C. Modern C++ programs use the preprocessor in a very restricted fashion.

Exercises Section 2.9.1

Exercise 2.31:Identify which of the following statements are declarations and which ones are definitions. Explain why they are declarations or definitions.

(a) extern int ix = 1024;

(b) int iy;

(c) extern int iz;

(d) extern const int &ri;




Exercise 2.32:Which of the following declarations and definitions would you put in a header? In a source file? Explain why.

(a) int var;

(b) const double pi = 3.1416;

(c) extern int total = 255;

(d) const double sq2 = sqrt(2.0);




Exercise 2.33:Determine what options your compiler offers for increasing the warning level. Recompile selected earlier programs using this option to see whether additional problems are reported.





A #include directive takes a single argument: the name of a header. The pre-processor replaces each #include by the contents of the specified header. Our own headers are stored in files. System headers may be stored in a compiler-specific format that is more efficient. Regardless of the form in which a header is stored, it ordinarily contains class definitions and declarations of the variables and functions needed to support separate compilation.

Headers Often Need Other Headers

Headers often #include other headers. The entities that a header defines often use facilities from other headers. For example, the header that defines our Sales_item class must include the string library. The Sales_item class has a string data member and so must have access to the string header.

Including other headers is so common that it is not unusual for a header to be included more than once in the same source file. For example, a program that used the Sales_item header might also use the string library. That program wouldn'tindeed shouldn'tknow that our Sales_item header uses the string library. In this case, the string header would be included twice: once by the program itself and once as a side-effect of including our Sales_item header.

Accordingly, it is important to design header files so that they can be included more than once in a single source file. We must ensure that including a header file more than once does not cause multiple definitions of the classes and objects that the header file defines. A common way to make headers safe uses the preprocessor to define a header guard. The guard is used to avoid reprocessing the contents of a header file if the header has already been seen.

Avoiding Multiple Inclusions

Before we write our own header, we need to introduce some additional preprocessor facilities. The preprocessor lets us define our own variables.

Names used for preprocessor variables must be unique within the program. Any uses of a name that matches a preprocessor vari